HDR Institute: Accelerated AI Algorithms for Data-Driven Discovery

HDR 研究所:用于数据驱动发现的加速 AI 算法

基本信息

  • 批准号:
    2117997
  • 负责人:
  • 金额:
    $ 1500万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The data revolution is dramatically accelerating the acquisition rate of new information, creating a vast amount of data. Artificial intelligence (AI) has emerged as a solution for rapid processing of complex datasets. New hardware such as graphics processing units (GPUs) and field-programmable gate arrays (FPGAs) allow AI algorithms to be greatly accelerated. To take full advantage of fast AI, the Institute of Accelerated AI Algorithms for Data-Driven Discovery (A3D3) targets fundamental problems in three fields of science: high energy physics, multi-messenger astrophysics, and systems neuroscience. A3D3 works closely within these domains to develop customized AI solutions to process large datasets in real-time, significantly enhancing their discovery potential. The ultimate goal of A3D3 is to construct the institutional knowledge essential for real-time applications of AI in any scientific field. Through dedicated outreach efforts, A3D3 will empower scientists with new tools to deal with the data deluge. Students mentored through A3D3 research will interact closely with industry partners, creating new career opportunities and strengthening synergies between academia and industry.The approach of A3D3 is to tightly couple AI algorithm innovations, heterogeneous computing platforms, and science-driven application development informed through close collaboration with domain scientists within physics, astronomy, and neuroscience. The common theme across domains is the development of AI strategies accelerated by emerging processor technology, employing hardware-AI co-design as a transformative solution to a wide range of scientific challenges. Hardware architectures such as GPUs and FPGAs have emerged as promising technologies to address many of the challenges in data-intensive science because they provide highly-performant, parallelizable, and configurable data processing pipeline capabilities. When combined with AI algorithms, these architectures significantly accelerate scientific workflows compared to CPU-only computing platforms. Building on the existing Fast Machine Learning community, A3D3 cultivates an ecosystem where scientists across domains collaborate to meet critical challenges, forming a central hub of excellence for innovation in accelerated AI for science. The work is extended to the public at large through a diverse set of educational training programs and by mentoring next-generation scientists.This project is part of the National Science Foundation's Big Idea activities in Harnessing the Data Revolution (HDR) and Windows on the Universe - The Era of Multi-Messenger Astrophysics (WoU-MMA). This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Divisions of Astronomical Sciences and of Physics within the NSF Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据革命极大地加快了新信息的获取速度,产生了大量的数据。人工智能(AI)已经成为快速处理复杂数据集的解决方案。 图形处理单元(GPU)和现场可编程门阵列(FPGA)等新硬件使AI算法大大加速。 为了充分利用快速人工智能,数据驱动发现加速人工智能算法研究所(A3 D3)针对三个科学领域的基本问题:高能物理学,多信使天体物理学和系统神经科学。 A3 D3在这些领域密切合作,开发定制的人工智能解决方案,以实时处理大型数据集,显著提高其发现潜力。 A3 D3的最终目标是构建人工智能在任何科学领域的实时应用所必需的机构知识。通过专门的推广工作,A3 D3将为科学家提供新的工具来处理数据泛滥。 通过A3 D3研究指导的学生将与行业合作伙伴密切互动,创造新的职业机会并加强学术界和工业界之间的协同效应。A3 D3的方法是将人工智能算法创新、异构计算平台和科学驱动的应用程序开发紧密结合起来,通过与物理学、天文学和神经科学领域的领域科学家密切合作。 各领域的共同主题是新兴处理器技术加速了人工智能战略的发展,采用硬件-人工智能协同设计作为应对各种科学挑战的变革性解决方案。 GPU和FPGA等硬件架构已成为解决数据密集型科学中许多挑战的有前途的技术,因为它们提供了高性能,可并行和可配置的数据处理管道功能。 当与AI算法相结合时,与仅使用CPU的计算平台相比,这些架构显著加快了科学工作流程。 基于现有的快速机器学习社区,A3 D3培养了一个生态系统,跨领域的科学家合作应对关键挑战,形成了加速人工智能科学创新的卓越中心。 该项目是美国国家科学基金会在利用数据革命(HDR)和宇宙之窗--多信使天体物理学时代(WoU-MMA)中的大创意活动的一部分。 该奖项由高级网络基础设施办公室颁发,由NSF数学和物理科学理事会的天文科学和物理部门共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpretable Geometric Deep Learning via Learnable Randomness Injection
  • DOI:
    10.48550/arxiv.2210.16966
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siqi Miao;Yunan Luo;Miaoyuan Liu;Pan Li
  • 通讯作者:
    Siqi Miao;Yunan Luo;Miaoyuan Liu;Pan Li
Unveiling hidden physics at the LHC
  • DOI:
    10.1140/epjc/s10052-022-10541-4
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Fischer;B. Mellado;S. Antusch;E. Bagnaschi;S. Banerjee;G. Beck;Benedetta Belfatto;M. Bellis;Z. Berezhiani;M. Blanke;B. Capdevila;K. Cheung;A. Crivellin;N. Desai;Bhupal Dev;R. Godbole;T. Han;P. Harris;M. Hoferichter;M. Kirk;S. Kulkarni;C. Lange;K. Lassila-Perini;Zhen Liu;F. Mahmoudi;C. A. Manzari;D. Marzocca;B. Mukhopādhyāẏa;A. Pich;Yifeng Ruan;Luc Schnell;J. Thaler;S. Westhoff
  • 通讯作者:
    O. Fischer;B. Mellado;S. Antusch;E. Bagnaschi;S. Banerjee;G. Beck;Benedetta Belfatto;M. Bellis;Z. Berezhiani;M. Blanke;B. Capdevila;K. Cheung;A. Crivellin;N. Desai;Bhupal Dev;R. Godbole;T. Han;P. Harris;M. Hoferichter;M. Kirk;S. Kulkarni;C. Lange;K. Lassila-Perini;Zhen Liu;F. Mahmoudi;C. A. Manzari;D. Marzocca;B. Mukhopādhyāẏa;A. Pich;Yifeng Ruan;Luc Schnell;J. Thaler;S. Westhoff
TorchSparse++: Efficient Point Cloud Engine
Algorithm and System Co-design for Efficient Subgraph-based Graph Representation Learning
  • DOI:
    10.14778/3551793.3551831
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haoteng Yin;Muhan Zhang;Yanbang Wang;Jianguo Wang;Pan Li
  • 通讯作者:
    Haoteng Yin;Muhan Zhang;Yanbang Wang;Jianguo Wang;Pan Li
ScaleHLS: a scalable high-level synthesis framework with multi-level transformations and optimizations: invited
ScaleHLS:具有多级转换和优化的可扩展高级综合框架:受邀
  • DOI:
    10.1145/3489517.3530631
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ye, Hanchen;Jun, HyeGang;Jeong, Hyunmin;Neuendorffer, Stephen;Chen, Deming
  • 通讯作者:
    Chen, Deming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shih-Chieh Hsu其他文献

Crystal structure-controlled synthesis of NiMoO<sub>4</sub>/NiO hierarchical microspheres for high-performance supercapacitors and photocatalysts
  • DOI:
    10.1016/j.est.2024.112639
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kuen-Chan Lee;Jen-Hsien Huang;Yen-Ju Wu;Kuan-Syun Wang;Er-Chieh Cho;Shih-Chieh Hsu;Ting-Yu Liu
  • 通讯作者:
    Ting-Yu Liu
Construction of dual Z-scheme Ag<sub>3</sub>VO<sub>4</sub>–BiVO<sub>4</sub>/InVO<sub>4</sub> photocatalysts using vanadium source from spent catalysts for contaminated water treatment and bacterial inactivation
  • DOI:
    10.1016/j.chemosphere.2024.142746
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kuen-Chan Lee;Shih-Chieh Hsu;Jen-Hsien Huang;Kuan-Syun Wang;Wei Kong Pang;Chih-Wei Hu;Yi-Jhen Jiang;Er-Chieh Cho;Huei Chu Weng;Ting-Yu Liu
  • 通讯作者:
    Ting-Yu Liu
Cr-doped LiNisub0.5/subMnsub1.5/subOsub4/sub derived from bimetallic Ni/Mn metal-organic framework as high-performance cathode for lithium-ion batteries
基于双金属 Ni/Mn 金属有机骨架衍生的铬掺杂 LiNi₀.₅Mn₁.₅O₄ 作为高性能锂离子电池正极材料
  • DOI:
    10.1016/j.est.2023.107686
  • 发表时间:
    2023-09-15
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Yu-Sheng Hsiao;Jen-Hsien Huang;Ta-Hung Cheng;Chih-Wei Hu;Nian-Jheng Wu;Chi-Yun Yen;Shih-Chieh Hsu;Huei Chu Weng;Chih-Ping Chen
  • 通讯作者:
    Chih-Ping Chen
Synergistic effect of doping and surface engineering on LiNisub0.5/subMnsub1.5/subOsub4/sub and its application as a high-performance cathode material for Li-ion batteries
  • DOI:
    10.1016/j.ceramint.2022.06.088
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Shih-Chieh Hsu;Cai-Wan Chang-Jian;Tzu-yen Huang;Chih-Wei Hu;Lo-Yueh Chang;Han-Hsin Chiang;Nian-Jheng Wu;Shih-An Liu;Jen-Hsien Huang;Jia-Lin Kang;Huei Chu Weng;Ting-Yu Liu
  • 通讯作者:
    Ting-Yu Liu
Surface-modified graphite felt incorporating synergistic effects of TiOsub2/sub decoration, nitrogen doping, and porous structure for high-performance vanadium redox flow batteries
具有二氧化钛修饰、氮掺杂和多孔结构协同效应的表面改性石墨毡用于高性能钒氧化还原液流电池
  • DOI:
    10.1016/j.surfcoat.2024.130785
  • 发表时间:
    2024-05-30
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Yu-Sheng Hsiao;Jen-Hsien Huang;Hong-Yu Lin;Wei Kong Pang;Min-Tzu Hung;Ta-Hung Cheng;Shih-Chieh Hsu;Huei Chu Weng;Yu-Ching Huang
  • 通讯作者:
    Yu-Ching Huang

Shih-Chieh Hsu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shih-Chieh Hsu', 18)}}的其他基金

Conference: NSF Meta-Workshop on AI to Accelerate Scientific and Engineering Discovery (AI2ASED)
会议:NSF 人工智能加速科学和工程发现元研讨会 (AI2ASED)
  • 批准号:
    2337647
  • 财政年份:
    2023
  • 资助金额:
    $ 1500万
  • 项目类别:
    Standard Grant
Collaborative Research: FASER and FASERnu at the Large Hadron Collider
合作研究:大型强子对撞机上的 FASER 和 FASERnu
  • 批准号:
    2110648
  • 财政年份:
    2021
  • 资助金额:
    $ 1500万
  • 项目类别:
    Standard Grant
Accelerating Searches for Beyond the Standard Model Physics and the ATLAS Pixel Detector
加速超越标准模型物理和 ATLAS 像素探测器的搜索
  • 批准号:
    2110963
  • 财政年份:
    2021
  • 资助金额:
    $ 1500万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing Science with Accelerated Machine Learning
协作研究:通过加速机器学习推进科学发展
  • 批准号:
    1934360
  • 财政年份:
    2019
  • 资助金额:
    $ 1500万
  • 项目类别:
    Continuing Grant
Beyond the Standard Model Searches using Mono-Boson Final States and the ATLAS Pixel Detector Upgrade
超越使用单玻色子最终状态和 ATLAS 像素探测器升级的标准模型搜索
  • 批准号:
    1510727
  • 财政年份:
    2015
  • 资助金额:
    $ 1500万
  • 项目类别:
    Continuing Grant

相似海外基金

Cardiff Metropolitan University and Chartered Institute for the Management of Sport and Physical Activity KTP 23_24 R2
卡迪夫城市大学和特许体育与体育活动管理研究所 KTP 23_24 R2
  • 批准号:
    10078815
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Knowledge Transfer Partnership
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
  • 批准号:
    EP/Z531844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Research Grant
Predoctoral Summer Institute
博士前暑期学院
  • 批准号:
    2415889
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Standard Grant
IUCRC Phase III Virginia Institute of Marine Science for Science Center for Marine Fisheries (SCEMFIS)
IUCRC 第三阶段 弗吉尼亚海洋科学研究所海洋渔业科学中心 (SCEMFIS)
  • 批准号:
    2332984
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Continuing Grant
Open Access Block Award 2024 - The James Hutton Institute Biology
2024 年开放获取区块奖 - 詹姆斯·赫顿生物学研究所
  • 批准号:
    EP/Z532514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Babraham Institute
2024 年开放获取区块奖 - Babraham Institute
  • 批准号:
    EP/Z53268X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Research Grant
NSF-BII: Integrative Movement Sciences Institute
NSF-BII:综合运动科学研究所
  • 批准号:
    2319710
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Cooperative Agreement
Open Access Block Award 2024 - Earlham Institute
2024 年开放获取区块奖 - Earlham Institute
  • 批准号:
    EP/Z531492/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Institute for Fiscal Studies
2024 年开放获取区块奖 - 财政研究所
  • 批准号:
    EP/Z531534/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1500万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了