A Graph Signal Processing Framework for Situational Awareness in Smart Grids

用于智能电网态势感知的图形信号处理框架

基本信息

  • 批准号:
    2118510
  • 负责人:
  • 金额:
    $ 29.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The reliability and security of smart grids, as critical infrastructures for communities, are of great importance. A cyber or physical stress, or even worse, a joint cyber and physical stress on transmission networks in smart grids can have widespread and devastating effects such as large blackouts. Situational awareness for monitoring and analyzing the cyber and physical states of the system is an essential function in smart grids that can ultimately enable mitigation and recovery from unexpected events. This project will investigate and develop new methodologies to enhance situational awareness in smart transmission grids through a Graph Signal Processing (GSP) framework, suitable for analyzing structured energy data and data on dynamics of interactions among system components. The outcomes of this project are expected to map out a new perspective and technical paradigm in terms of analyzing data for smart grids with the potential to be applied to other networked systems and critical infrastructures. This project will also have substantial broader impacts on education. Namely, the integrated education plan includes introducing energy data analytics topics to students through course projects as well as promoting research experiences, especially for underrepresented students.The research component of this project has two cohesive thrusts. In the first thrust, graph spectral analysis techniques, filter design, system frequency response to events, and graph sampling techniques will be used for cyber stress detection, localization and state estimation under stresses. Machine learning methods will also be used to learn the signatures of stresses in various GSP domains, including vertex, graph-frequency, and joint vertex-frequency domains, and in signal properties, including graph signal smoothness, to improve such techniques. In addition to cyber stresses, situational awareness towards physical stresses is also critical but challenging due to the unique properties associated with physical stresses. For instance, the energy signal oscillations due to physical stresses are not fully localized and can occur at a distance due to the physics of electricity. Moreover, certain physical events including failures can change the underlying physical topology, and consequently the frequency bases of the graph signals. Hence, the second thrust of this project will focus on improving situational awareness of physical stresses by addressing such challenges in the detection and localization techniques for physical stresses in a GSP-based framework. The role of uncertainties and missing information on analyzing physical stresses will also be investigated, which will enable evaluation of the effects of certain joint cyber and physical attacks on the system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能电网作为社区的重要基础设施,其可靠性和安全性至关重要。网络或物理压力,甚至更糟的是,智能电网中传输网络的联合网络和物理压力可能会产生广泛的破坏性影响,例如大停电。用于监测和分析系统的网络和物理状态的态势感知是智能电网中的一项基本功能,最终可以从意外事件中缓解和恢复。该项目将研究和开发新的方法,以通过图形信号处理(GSP)框架增强智能输电网的态势感知,适用于分析结构化能源数据和系统组件之间相互作用的动态数据。该项目的成果预计将在分析智能电网数据方面绘制出一个新的视角和技术范式,并有可能应用于其他联网系统和关键基础设施。该项目还将对教育产生广泛的影响。也就是说,综合教育计划包括通过课程项目向学生介绍能源数据分析主题,以及促进研究经验,特别是针对代表性不足的学生。该项目的研究部分有两个连贯的重点。在第一个推力,图形频谱分析技术,滤波器设计,系统频率响应事件,和图形采样技术将用于网络压力检测,定位和状态估计的压力。机器学习方法还将用于学习各种GSP域中的应力签名,包括顶点,图形频率和联合顶点频率域,以及信号特性,包括图形信号平滑度,以改进此类技术。除了网络压力,对物理压力的态势感知也很关键,但由于与物理压力相关的独特属性而具有挑战性。例如,由于物理应力引起的能量信号振荡不是完全局部化的,并且由于电的物理性质而可能在一定距离处发生。 此外,包括故障的某些物理事件可以改变底层物理拓扑,并且因此改变图形信号的频率基础。因此,该项目的第二个重点将集中在提高身体压力的情景意识,通过解决这些挑战的检测和定位技术的身体压力在一个基于GSP的框架。此外,还将研究不确定性和缺失信息对分析物理压力的作用,这将有助于评估某些网络和物理联合攻击对系统的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Graph Signal Processing Framework for Detecting and Locating Cyber and Physical Stresses in Smart Grids
  • DOI:
    10.1109/tsg.2022.3177154
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Abul Hasnat, Md;Rahnamay-Naeini, Mahshid
  • 通讯作者:
    Rahnamay-Naeini, Mahshid
Learning Power System’s Graph Signals for Cyber and Physical Stress Classification
学习 Power System 用于网络和物理压力分类的图形信号
Data-Driven, Multi-Region Distributed State Estimation for Smart Grids
A Temporal Graph Neural Network for Cyber Attack Detection and Localization in Smart Grids
用于智能电网中网络攻击检测和定位的时态图神经网络
Power System State Recovery using Local and Global Smoothness of its Graph Signals
使用图形信号的局部和全局平滑度进行电力系统状态恢复
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mia Naeini其他文献

Mia Naeini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mia Naeini', 18)}}的其他基金

CAREER: Learning Power System Graph Signals for Cascade Resiliency
职业:学习电力系统图形信号以实现级联弹性
  • 批准号:
    2238658
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: CRISP Type 2: Revolution through Evolution: A Controls Approach to Improve how Society Interacts with Electricity.
合作研究:CRISP 类型 2:通过进化进行革命:改善社会与电力互动的控制方法。
  • 批准号:
    1761471
  • 财政年份:
    2017
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISP Type 2: Revolution through Evolution: A Controls Approach to Improve how Society Interacts with Electricity.
合作研究:CRISP 类型 2:通过进化进行革命:改善社会与电力互动的控制方法。
  • 批准号:
    1541018
  • 财政年份:
    2015
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant

相似国自然基金

一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
  • 批准号:
    81601856
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
  • 批准号:
    81301123
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Graph Signal Processing and Graph Machine Learning
图信号处理和图机器学习
  • 批准号:
    2884089
  • 财政年份:
    2023
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Studentship
Graph Signal Processing on Dynamic Graphs
动态图上的图信号处理
  • 批准号:
    2768264
  • 财政年份:
    2022
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Studentship
Graph based signal processing for optical networks
光网络基于图的信号处理
  • 批准号:
    2737255
  • 财政年份:
    2022
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Studentship
QuantSLEEP: A numerical toolbox for a graph signal processing of the rhythmic and arrhythmic components of sleep EEG recordings.
QuantSLEEP:一个数字工具箱,用于对睡眠脑电图记录的节律和心律失常成分进行图形信号处理。
  • 批准号:
    RGPIN-2022-05351
  • 财政年份:
    2022
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing Graph Signal Processing Techniques for Monitoring and Control of Electric Distribution Power Systems
先进的图形信号处理技术用于配电电力系统的监测和控制
  • 批准号:
    2210012
  • 财政年份:
    2022
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
CAREER: Bayesian Graph Signal Processing for Machine Perception
职业:用于机器感知的贝叶斯图信号处理
  • 批准号:
    2146261
  • 财政年份:
    2022
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Continuing Grant
CCSS: Hyper-Graph Signal Processing for Multimedia Data Analysis in Cyber System Applications
CCSS:用于网络系统应用中多媒体数据分析的超图信号处理
  • 批准号:
    2029848
  • 财政年份:
    2021
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Standard Grant
Signal Processing Over Networks: Graph-Based Methods for Data Analysis
网络信号处理:基于图的数据分析方法
  • 批准号:
    RGPIN-2017-06266
  • 财政年份:
    2021
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of graph signal processing and hyperspectral image processing
图信号处理和高光谱图像处理的集成
  • 批准号:
    21K21312
  • 财政年份:
    2021
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Signal Processing Over Networks: Graph-Based Methods for Data Analysis
网络信号处理:基于图的数据分析方法
  • 批准号:
    RGPIN-2017-06266
  • 财政年份:
    2020
  • 资助金额:
    $ 29.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了