Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
基本信息
- 批准号:2118737
- 负责人:
- 金额:$ 6.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is an inexorable need for increased computational performance and improved energy efficiency in the development and use of machine-learning (ML) models. Currently available frameworks for ML have limitations in developing non-traditional models, e.g., using tensor networks, as well as in developing and using models that are too large to fit in the physical memory of processors. The design of efficient hardware accelerators and the mapping of ML algorithms to them is another challenge. This planning project presents a plan of action to address these needs via advances to model-driven compiler optimization. The research conducted in this project is enhancing productivity, performance, and portability in developing software for ML. It is enabling new ML applications to be developed with high productivity, with high achieved performance, and performance-portability over a diverse set of hardware platforms. It is enabling greater "democratization of ML", permitting researchers who only have access to low-end hardware platforms to be able to run the largest models -- infeasible today due to limitations of existing ML frameworks. The project involves training activities tailored for K-12 students, undergraduate students, and graduate students. In this planning project, the following primary technical directions are explored: (1) ML Algorithms: flexible new ML models, offering trade-offs between model size, model execution time, model accuracy, and energy efficiency; (2) Optimizing Compilers: advances in polyhedral compiler optimization to enable parametric tilesize optimization and code generation for diverse target platforms, including CPUs, GPUs, and accelerators; (3) ML Accelerators: new ML accelerator designs for sparse and dense operators, optimized for multiple criteria via comprehensive design space exploration. Broader impact aims of the project include the "Democratization of AI”, to enable state-of-the-art ML models to be used by all, on widely available non-state-of-the-art hardware. To achieve these goals, the project integrates expertise in computer architecture, optimizing compilers, ML algorithms, and high-performance computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在开发和使用机器学习模型(ML)模型中,需要提高计算性能和提高能源效率。当前可用的ML框架在开发非传统模型(例如使用张量网络)以及开发和使用太大而无法适合处理器物理内存的模型方面有局限性。有效的硬件加速器的设计和向其映射ML算法是另一个挑战。该计划项目提出了一项行动计划,可以通过模型驱动的编译器优化来满足这些需求。该项目进行的研究是提高为ML开发软件的生产率,性能和可移植性。它使新的ML应用程序能够以较高的生产率,高度达到的性能以及对潜水员一组硬件平台的性能 - 通货性的开发。它正在实现更大的“ ML民主化”,使他们只能使用低端硬件平台的研究人员能够运行最大的模型 - 由于现有ML框架的局限性,如今是不可行的。该项目涉及针对K-12学生,本科生和研究生量身定制的培训活动。在此计划项目中,探讨了以下主要技术方向:(1)ML算法:灵活的新ML模型,在模型大小,模型执行时间,模型准确性和能源效率之间提供权衡; (2)优化编译器:多面体编译器优化的进步,以启用参数图块的优化和代码生成,包括CPU,GPU和加速器在内的潜水员目标平台; (3)ML加速器:针对稀疏和密集操作员的新ML加速器设计,通过全面的设计空间探索针对多个标准进行了优化。该项目的更广泛影响的目的包括“ AI的民主化”,以使所有人都能使用最先进的ML模型,并在广泛可用的非国家硬件上。为了实现这些目标,该项目将计算机架构,优化编译器,ML算法和高性能计算的专业知识融为一体。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comprehensive Accelerator-Dataflow Co-design Optimization for Convolutional Neural Networks
- DOI:10.1109/cgo53902.2022.9741281
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Miheer Vaidya;Aravind Sukumaran-Rajam;A. Rountev;P. Sadayappan
- 通讯作者:Miheer Vaidya;Aravind Sukumaran-Rajam;A. Rountev;P. Sadayappan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atanas Rountev其他文献
Atanas Rountev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atanas Rountev', 18)}}的其他基金
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
- 批准号:
2216903 - 财政年份:2022
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
SHF: Small: PrivAid: Differentially-Private Analytics for Android Apps
SHF:小型:PrivAid:Android 应用程序的差分隐私分析
- 批准号:
1907715 - 财政年份:2019
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
SHF: Small: Control-Flow and Data-Flow Analysis of Android Software: Foundations and Applications
SHF:小:Android 软件的控制流和数据流分析:基础和应用
- 批准号:
1526459 - 财政年份:2015
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
SHF: Small: LeakDroid: Exposing Leaks and Jank in Android Applications
SHF:小:LeakDroid:暴露 Android 应用程序中的泄漏和卡顿
- 批准号:
1319695 - 财政年份:2013
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
SHF: Small: Algorithms for Dynamic Analysis of Run-Time Bloat
SHF:小:运行时膨胀动态分析算法
- 批准号:
1017204 - 财政年份:2010
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
CAREER: Dataflow Analysis for Modern Software Systems
职业:现代软件系统的数据流分析
- 批准号:
0546040 - 财政年份:2006
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 6.3万 - 项目类别:
Continuing Grant