Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
基本信息
- 批准号:2316203
- 负责人:
- 金额:$ 99.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High-dimensional data computation and analytics are gaining importance in various domains, such as quantum chemistry/physics, quantum circuit simulation, social networks, healthcare, and machine/deep learning. Tensors, a representation of high-dimensional data, have become increasingly crucial. While extensive research has focused on tensor methods like decompositions and factorizations for low-dimensional data, there is a notable lack of development in tensor networks that cater to high-dimensional data (over ten dimensions) and can extract physically meaningful latent variables. The challenges arise from their complicated mathematical nature, extremely high computational complexity, and domain-specific difficulties. This project aims to bridge this critical gap by devising efficient tensor networks, especially for sparse data, which are prevalent in many real-world applications. The impacts of the project encompass four aspects: 1) Improving data compression, computation, memory usage, and interpretability of tensor networks; 2) fostering enduring and collaborative partnerships among academia, national research labs, and industry with a shared focus on the aforementioned applications; and 3) broadening education avenues by designing relevant new courses, training undergraduate and graduate students, organizing workshops, and enhancing K-12 outreach. This project delves into Cross-layer cooRdination and Optimization for Scalable and Sparse Tensor Networks (CROSS) designed for heterogeneous systems equipped with diverse accelerators like Graphics Processing Units (GPUs), Tensor Processing Units (TPUs) and Field Programmable Gate Arrays (FPGAs), and various memories such as dynamic and non-volatile random-access memories. This research aims to study sparsity within widely used tensor networks by incorporating constraints, regularization, dictionary, and domain knowledge. In addition to sparsity challenges, sparse tensor networks also face problems such as dimensionality, exacerbated data randomness and irregular program and memory access behaviors. This research tackles these challenges from four dimensions: (1) memory heterogeneity-aware representations and data (re-)arrangement, (2) balanced sparse tensor contraction algorithms with smart page arrangement, (3) memoization and intelligent allocation to reduce computational cost, and (4) specialized accelerator architectures for sparse tensor networks. The optimized sparse tensor networks represent a synergistic effort combining expertise from high-performance computing, algorithms, compilers, computer architecture and performance modeling. The proposed solutions are evaluated under diverse application scenarios and across a wide range of hardware environments to demonstrate their effectiveness and applicability in real-world settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维数据计算和分析在量子化学/物理、量子电路模拟、社交网络、医疗保健和机器/深度学习等各个领域越来越重要。张量,一种高维数据的表示,已经变得越来越重要。虽然广泛的研究集中在低维数据的分解和因子分解等张量方法上,但在满足高维数据(超过十维)并可以提取物理上有意义的潜在变量的张量网络方面,明显缺乏发展。这些挑战来自于它们复杂的数学性质、极高的计算复杂性和特定领域的困难。该项目旨在通过设计高效的张量网络来弥合这一关键差距,特别是对于稀疏数据,这在许多现实世界的应用中都很普遍。该项目的影响包括四个方面:1)改善张量网络的数据压缩、计算、内存使用和可解释性;2)在学术界、国家研究实验室和工业界之间建立持久的合作伙伴关系,共同关注上述应用;3)通过设计相关新课程、培训本科生和研究生、组织研讨会和加强K-12外展来拓宽教育途径。该项目深入研究了可扩展和稀疏张量网络(CROSS)的跨层协调和优化,该网络设计用于配备各种加速器的异构系统,如图形处理单元(gpu),张量处理单元(tpu)和现场可编程门阵列(fpga),以及各种存储器,如动态和非易失性随机存取存储器。本研究旨在通过结合约束、正则化、字典和领域知识来研究广泛使用的张量网络中的稀疏性。除了稀疏性方面的挑战,稀疏张量网络还面临维度、数据随机性加剧、程序和内存访问行为不规范等问题。本研究从四个方面解决了这些挑战:(1)内存异构感知表示和数据(重新)排列;(2)具有智能页面排列的平衡稀疏张量收缩算法;(3)记忆和智能分配以降低计算成本;(4)稀疏张量网络的专用加速器架构。优化的稀疏张量网络代表了高性能计算、算法、编译器、计算机体系结构和性能建模等专业知识的协同努力。提出的解决方案在不同的应用场景和广泛的硬件环境下进行评估,以证明其在现实环境中的有效性和适用性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lizhong Chen其他文献
Combined liver and kidney transplantation in Guangzhou, China.
中国广州进行肝肾联合移植。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:3.3
- 作者:
Xiao;Xiao;Guihua Chen;Lizhong Chen;Changxi Wang;Jie - 通讯作者:
Jie
Kidney transplantation from living related donors aged more than 60 years: a single center experience
60 岁以上活体亲属捐献者的肾移植:单中心经验
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3
- 作者:
Yifu Li;Jun Li;Q. Fu;Lizhong Chen;J. Fei;S. Deng;J. Qiu;Guodong Chen;Gang Huang;Changxi Wang - 通讯作者:
Changxi Wang
On Trade-off Between Static and Dynamic Power Consumption in NoC Power Gating
NoC功率门控中静态与动态功耗的权衡
- DOI:
10.1109/islped.2019.8824936 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Di Zhu;Yunfan Li;Lizhong Chen - 通讯作者:
Lizhong Chen
Maximizing the performance of NoC-based MPSoCs under total power and power density constraints
在总功率和功率密度限制下最大限度地提高基于 NoC 的 MPSoC 的性能
- DOI:
10.1109/isqed.2016.7479175 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
A. Shafaei;Yanzhi Wang;Lizhong Chen;Shuang Chen;Massoud Pedram - 通讯作者:
Massoud Pedram
Clinical and Pathologic Feature of Patients With Early Versus Late Active Antibody-Mediated Rejection After Kidney Transplantation: A Single-Center Experience
肾移植后早期与晚期活性抗体介导的排斥反应患者的临床和病理特征:单中心经验
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.9
- 作者:
Zixuan Wu;Longhui Qiu;Chang Wang;Xiaomian Liu;Qihao Li;Shuangjin Yu;Yuan Yue;Jie Li;Wutao Chen;Jiajian Lai;Lizhong Chen;Changxi Wang;Guodong Chen - 通讯作者:
Guodong Chen
Lizhong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lizhong Chen', 18)}}的其他基金
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2217028 - 财政年份:2022
- 资助金额:
$ 99.7万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Architecture Innovations for Enabling Simultaneous Translation at the Edge
合作研究:SHF:小型:支持边缘同步翻译的架构创新
- 批准号:
2223483 - 财政年份:2022
- 资助金额:
$ 99.7万 - 项目类别:
Standard Grant
CAREER: Advancing On-chip Network Architecture for GPUs
职业:推进 GPU 片上网络架构
- 批准号:
1750047 - 财政年份:2018
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Design of Many-core NoCs for the Dark Silicon Era
SHF:小型:协作研究:暗硅时代的多核 NoC 设计
- 批准号:
1619456 - 财政年份:2016
- 资助金额:
$ 99.7万 - 项目类别:
Standard Grant
CRII: SHF: Investigation of Effective On-chip Network Designs for GPUs
CRII:SHF:有效的 GPU 片上网络设计研究
- 批准号:
1566637 - 财政年份:2016
- 资助金额:
$ 99.7万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316177 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316160 - 财政年份:2023
- 资助金额:
$ 99.7万 - 项目类别:
Continuing Grant