DMREF: AI-Guided Accelerated Discovery of Multi-Principal Element Multi-Functional Alloys
DMREF:人工智能引导加速多主元多功能合金的发现
基本信息
- 批准号:2119103
- 负责人:
- 金额:$ 180万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Shape Memory Alloys (SMAs) are a class of metallic alloys that undergo reversible and repeatable martensitic transformations (MT) upon applying stress, magnetic fields, and/or temperature changes. These transformations can enable a wide range of technologies, including compact solid-state actuators, solid-state refrigerators, thermal storage and management systems, and structures that are stable against wide temperature changes. Unfortunately, current alloy formulations (with relatively simple chemistries) have been found to have significant limitations in their performance that prevent their widespread deployment in transformative technologies. This has pushed the field towards exploring alloys with increasingly complex chemistries and with more than three or four constituents being present in significant amounts [i.e., multi-principal element multi-functional alloys (MPEMFAs)]. Navigating this vast chemical space is extremely challenging. To address this challenge, this project will develop a novel closed-loop materials design framework, which can integrate experiments, computational materials science models, and machine learning (ML) / artificial intelligence (AI) approaches, with customized interfaces connecting experiments, models, existing data, and more critically, researchers across disciplines. This Designing Materials to Revolutionize and Engineer our Future (DMREF) project aims to result in an enhanced understanding of an important class of materials to enable a wide range of technologies. Participating students will be trained in interdisciplinary approaches to materials discovery in the spirit of the Materials Genome Initiative (MGI).This project aims to discover MPEMFAs with extreme property combinations, such as ultra-high temperature martensitic transformations (MTs) with low hysteresis, stable reversible shape change under stress, superelasticity at temperatures significantly beyond state-of-the-art; extreme properties, such as Invar and Elinvar effects up to 800°C; or uniquely tailored properties, such as SMAs-as-phase-change-materials (PCMs) with high thermal conductivity and transformation enthalpy but also with widely different MT temperatures. To navigate this vast chemical space a new framework will be developed that: (i) employs novel physics-informed machine learning to efficiently identify the feasible regions amenable to optimization; (ii) fuses simulations and experiments to obtain efficient ML models; (iii) develops new Batch (parallel) Bayesian Optimization (BO) strategies to make globally optimal iterative experimental design; and (iv) is capable of simultaneously considering multiple objectives and constraints. The aim is to go beyond accelerated discovery, seeking to address questions about the underlying factors responsible for the multi-functional behavior in MPEMFAs. The generated metadata, together with the computation and ML models, open-access code, end-to-end workflows, as well as high quality databases, will provide a testbed for developing and validating ML/AI frameworks when learning complex systems under data scarcity, particularly in ML/AI-drive materials discovery. The project will leverage the recently established interdisciplinary graduate certificate on materials science, informatics and design, Data-Enabled Discovery and Design of Energy Materials (D3EM), to train the PhD students supported by this effort, contributing to the workforce development goals of the Materials Genome Initiative.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
形状记忆合金(SMA)是一类在施加应力、磁场和/或温度变化时经历可逆且可重复的马氏体转变(MT)的金属合金。这些转变可以实现广泛的技术,包括紧凑型固态致动器,固态制冷机,热存储和管理系统以及对广泛温度变化稳定的结构。不幸的是,已经发现当前的合金配方(具有相对简单的化学性质)在其性能方面具有显著的限制,这阻止了其在变革性技术中的广泛部署。这推动了该领域朝着探索具有越来越复杂的化学性质并且具有以显著量存在的多于三种或四种成分的合金的方向发展[即,多主元素多功能合金(MPEMFAs)。在这个巨大的化学空间中航行极具挑战性。为了应对这一挑战,该项目将开发一种新型的闭环材料设计框架,该框架可以集成实验,计算材料科学模型和机器学习(ML)/人工智能(AI)方法,并通过定制接口连接实验,模型,现有数据,更重要的是,跨学科的研究人员。这个设计材料来革命和工程我们的未来(DMREF)项目旨在提高对一类重要材料的理解,以实现广泛的技术。该项目旨在发现具有极端性能组合的MPEMFAs,例如具有低滞后的超高温马氏体转变(MT),在应力下稳定可逆的形状变化,在温度显著超过最先进水平的超弹性;极端的性能,如高达800°C的因瓦和埃林瓦效应;或独特的定制性能,如SMA作为相变材料(PCM),具有高热导率和相变焓,但MT温度差异很大。为了导航这个巨大的化学空间,将开发一个新的框架:(i)采用新的物理信息机器学习来有效地识别适合优化的可行区域;(ii)融合模拟和实验以获得有效的ML模型;(iii)开发新的批处理方法。(并行)贝叶斯优化(BO)策略,以进行全局最优的迭代实验设计;以及(iv)能够同时考虑多个目标和约束。其目的是超越加速发现,寻求解决有关负责MPEMFA中多功能行为的潜在因素的问题。生成的元数据,加上计算和ML模型,开放访问代码,端到端工作流以及高质量的数据库,将为在数据稀缺的情况下学习复杂系统时开发和验证ML/AI框架提供测试平台,特别是在ML/AI驱动的材料发现中。该项目将利用最近建立的材料科学,信息学和设计跨学科研究生证书,能源材料的数据驱动的发现和设计(D3 EM),以培训受此努力支持的博士生,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
- DOI:10.48550/arxiv.2306.09549
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Haiyang Yu;Meng Liu;Youzhi Luo;A. Strasser;X. Qian;Xiaoning Qian;Shuiwang Ji
- 通讯作者:Haiyang Yu;Meng Liu;Youzhi Luo;A. Strasser;X. Qian;Xiaoning Qian;Shuiwang Ji
VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Randy Ardywibowo;Zepeng Huo;Zhangyang Wang;Bobak J. Mortazavi;Shuai Huang;Xiaoning Qian
- 通讯作者:Randy Ardywibowo;Zepeng Huo;Zhangyang Wang;Bobak J. Mortazavi;Shuai Huang;Xiaoning Qian
An interpretable boosting-based predictive model for transformation temperatures of shape memory alloys
形状记忆合金转变温度的可解释的基于boosting的预测模型
- DOI:10.1016/j.commatsci.2023.112225
- 发表时间:2023
- 期刊:
- 影响因子:3.3
- 作者:Zadeh, Sina Hossein;Behbahanian, Amir;Broucek, John;Fan, Mingzhou;Vazquez, Guillermo;Noroozi, Mohammad;Trehern, William;Qian, Xiaoning;Karaman, Ibrahim;Arroyave, Raymundo
- 通讯作者:Arroyave, Raymundo
MoReL: Multi-omics Relational Learning
- DOI:10.48550/arxiv.2203.08149
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Arman Hasanzadeh;Ehsan Hajiramezanali;N. Duffield;Xiaoning Qian
- 通讯作者:Arman Hasanzadeh;Ehsan Hajiramezanali;N. Duffield;Xiaoning Qian
NiTiCu Shape Memory Alloys with Ultra-Low Phase Transformation Range as Solid-State Phase Change Materials
- DOI:10.1016/j.actamat.2023.119310
- 发表时间:2023-09
- 期刊:
- 影响因子:9.4
- 作者:W. Trehern;N. Hite;R. Ortiz-Ayala;K. Atli;D.J. Sharar;A.A. Wilson;R. Seede;A.C. Leff;I. Karaman
- 通讯作者:W. Trehern;N. Hite;R. Ortiz-Ayala;K. Atli;D.J. Sharar;A.A. Wilson;R. Seede;A.C. Leff;I. Karaman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raymundo Arroyave其他文献
Open source software for materials and process modeling
- DOI:
10.1007/s11837-008-0057-4 - 发表时间:
2008-10-25 - 期刊:
- 影响因子:2.300
- 作者:
Adam C. Powell;Raymundo Arroyave - 通讯作者:
Raymundo Arroyave
Commentary: Recent Advances in Ab Initio Thermodynamics of Materials
- DOI:
10.1007/s11837-013-0744-7 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:2.300
- 作者:
Raymundo Arroyave - 通讯作者:
Raymundo Arroyave
Phase-field model of silicon carbide growth during isothermal condition
等温条件下碳化硅生长的相场模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
Elias J. Munoz;V. Attari;Marco C. Martinez;Matthew B. Dickerson;M. Radovic;Raymundo Arroyave - 通讯作者:
Raymundo Arroyave
Functionally graded NiTiHf high-temperature shape memory alloys using laser powder bed fusion: localized phase transformation control and multi-stage actuation
采用激光粉末床熔融技术的功能梯度 NiTiHf 高温形状记忆合金:局部相变控制和多级驱动
- DOI:
10.1016/j.actamat.2025.121175 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:9.300
- 作者:
Abdelrahman Elsayed;Taresh Guleria;Haoyi Tian;Bibhu P. Sahu;Kadri C. Atli;Alaa Olleak;Alaa Elwany;Raymundo Arroyave;Dimitris Lagoudas;Ibrahim Karaman - 通讯作者:
Ibrahim Karaman
On the kinetics of electrodeposition in a magnesium metal anode
镁金属阳极电沉积动力学
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.4
- 作者:
V. Attari;Sarbajit Banerjee;Raymundo Arroyave - 通讯作者:
Raymundo Arroyave
Raymundo Arroyave的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raymundo Arroyave', 18)}}的其他基金
DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
- 批准号:
2323611 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Continuing Grant
CDS&E: Efficient Uncertainty Analysis in Multi-physics Phase Field Models of Microstructure Evolution
CDS
- 批准号:
2001333 - 财政年份:2021
- 资助金额:
$ 180万 - 项目类别:
Continuing Grant
Probing Microstructure-Martensitic Transformation Couplings in Metamagnetic Shape Memory Alloys
探测变磁形状记忆合金中的微观结构-马氏体相变耦合
- 批准号:
1905325 - 财政年份:2019
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
S&AS: INT: Autonomous Experimentation Platform for Accelerating Manufacturing of Advanced Materials
S
- 批准号:
1849085 - 财政年份:2019
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Advanced Materials Manufacturing and Discovery for Extreme Environments (CAM2DE2)
规划资助:极端环境先进材料制造与发现工程研究中心(CAM2DE2)
- 批准号:
1840598 - 财政年份:2018
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
DMREF: Accelerating the Development of High Temperature Shape Memory Alloys
DMREF:加速高温形状记忆合金的开发
- 批准号:
1534534 - 财政年份:2015
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
NRT-DESE: Data-Enabled Discovery and Design of Energy Materials
NRT-DESE:基于数据的能源材料发现和设计
- 批准号:
1545403 - 财政年份:2015
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
Collaborative Research: Computational Study of Low Volume Solder Interconnects for 3D Integrated Circuit Packaging
合作研究:3D 集成电路封装小体积焊料互连的计算研究
- 批准号:
1462255 - 财政年份:2015
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
Linking Fundamental Structural and Physical Properties of the MAX Phases at Finite Temperatures through Synergetic Experimental and Computational Research
通过协同实验和计算研究将有限温度下 MAX 相的基本结构和物理特性联系起来
- 批准号:
1410983 - 财政年份:2014
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
I-Corps: Tailored Thermal Expansion Alloys
I-Corps:定制热膨胀合金
- 批准号:
1357551 - 财政年份:2013
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
相似国自然基金
AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
- 批准号:JCZRLH202500512
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
应用于AI芯片的先进封装TSV关键技术研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
A self-guided and monitored innovative AI-driven parental support intervention (mobile app), for families caring for a young one that self-harms: feasibility study
一种自我指导和监控的创新型人工智能驱动的家长支持干预措施(移动应用程序),适用于照顾自残儿童的家庭:可行性研究
- 批准号:
10101171 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Collaborative R&D
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Z000262/1 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Research Grant
AI-Guided Health Checks for Cardio-Respiratory Conditions
人工智能引导的心肺疾病健康检查
- 批准号:
83011268 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Innovation Loans
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Y03743X/1 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Research Grant
HarmonicAI: Human-guided collAboRative Multi-Objective design of explaiNable, faIr and privaCy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和保护隐私的人工智能的人类引导协作多目标设计
- 批准号:
EP/Z000041/1 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Research Grant
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Y037367/1 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Research Grant
FMSG: Cyber: Toward Future Underwater Additive Manufacturing of Bio-Based Construction Materials Through AI-Guided Sensing and Material Modeling
FMSG:网络:通过人工智能引导的传感和材料建模迈向未来生物基建筑材料的水下增材制造
- 批准号:
2328188 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
EAGER: Knowledge-guided neurosymbolic AI with guardrails for safe virtual health assistants
EAGER:知识引导的神经符号人工智能,带有安全虚拟健康助手的护栏
- 批准号:
2335967 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
Standard Grant