Linking Fundamental Structural and Physical Properties of the MAX Phases at Finite Temperatures through Synergetic Experimental and Computational Research

通过协同实验和计算研究将有限温度下 MAX 相的基本结构和物理特性联系起来

基本信息

项目摘要

NON-TECHNICAL DESCRIPTION: Recently, a new class of nanolayered carbides and nitrides, commonly referred to as MAX phases, has attracted considerable attention as potential multi-functional/structural materials for harsh environments since they combine some of the best attributes of ceramics (high-temperature stability and strength) and metals (high thermal conductivity and resistance to fracture). MAX phases are an exciting, and technologically important class of high-temperature materials but much remains to be understood, especially about the influence of chemistry on their properties, and their transition from brittle to ductile behavior (at elevated temperatures). This project addresses this challenge by synergistically combining experiments and computer simulations. A better understanding of the relationship between chemistry and mechanical stability may enable the faster deployment of MAX phases in technologies that benefit from higher operating temperatures, making it possible to develop more reliable and efficient power generation (and propulsion) systems. In addition to contributions to the science and technology of MAX phases, the project supports activities related to curriculum development, K-12 outreach, high school teacher training, mentoring and contributing to the professional training and development of undergraduate and graduate student researchers.TECHINCAL DETAILS: The overall goal of this project is to investigate the finite-temperature structural and thermo-mechanical properties of MAX phases (comprised of an early transition metal (M), an A-group element and X which is either carbon and/or nitrogen) and their solid solutions through high-throughput experimental and computational approaches. Computations are being used for the rapid screening of materials while high-throughput synthesis allows the fine exploration of alloying effects on the thermal, mechanical and structural properties of a wide range of MAX structures. The project's major scientific goal is to elucidate the microscopic mechanisms responsible for the ductile-to-brittle transition in these materials under the hypothesis that the anharmonic nature of the motion of the M and A layers in the structures drives the onset of mechanical instability. Conventional electronic structure calculations and ab initio molecular dynamics will be used to investigate the ground state and anharmonic properties of MAX phases while spark plasma sintering will be used for the high-throughput synthesis of compositional variants of MAX compounds pre-screened by computations. The project addresses fundamental questions related to the compositional stability of MAX phases, the effect of composition and structure on their finite-temperature mechanical properties as well as the microscopic basis for the brittle-to-ductile transition. Understanding of the influence of chemistry on thermo-mechanical stability of these materials will enable their faster deployment in important technologies.
非技术描述:最近,一类新的纳米层状碳化物和氮化物,通常称为MAX相,作为用于恶劣环境的潜在多功能/结构材料已经引起了相当大的关注,因为它们结合了陶瓷(高温稳定性和强度)和金属(高导热性和抗断裂性)的一些最佳属性的联合收割机。MAX相是一种令人兴奋的、技术上重要的高温材料,但仍有许多问题有待了解,特别是化学对其性能的影响,以及它们从脆性到韧性的转变(在高温下)。该项目通过协同结合实验和计算机模拟来解决这一挑战。更好地理解化学和机械稳定性之间的关系,可以使MAX阶段在受益于更高工作温度的技术中更快地部署,从而有可能开发更可靠和更有效的发电(和推进)系统。除了对MAX阶段的科学和技术做出贡献外,该项目还支持与课程开发、K-12推广、高中教师培训、指导和促进本科生和研究生研究人员的专业培训和发展相关的活动。本计画的主要目的是研究MAX相的有限温度结构与热机械性质(由前过渡金属(M)、A族元素和为碳和/或氮的X组成)及其固溶体。计算被用于快速筛选材料,而高通量合成允许精细探索合金化对各种MAX结构的热,机械和结构性能的影响。该项目的主要科学目标是阐明这些材料中韧脆转变的微观机制,假设结构中M和A层运动的非谐性质驱动机械不稳定性的发生。传统的电子结构计算和从头算分子动力学将用于研究MAX相的基态和非谐性质,而放电等离子体烧结将用于高通量合成MAX化合物的组成变体,这些变体通过计算预先筛选。该项目解决了与MAX相的组成稳定性、组成和结构对其有限温度力学性能的影响以及脆韧性转变的微观基础相关的基本问题。了解化学对这些材料的热机械稳定性的影响将使它们能够更快地部署在重要技术中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raymundo Arroyave其他文献

Open source software for materials and process modeling
  • DOI:
    10.1007/s11837-008-0057-4
  • 发表时间:
    2008-10-25
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Adam C. Powell;Raymundo Arroyave
  • 通讯作者:
    Raymundo Arroyave
Commentary: Recent Advances in Ab Initio Thermodynamics of Materials
  • DOI:
    10.1007/s11837-013-0744-7
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Raymundo Arroyave
  • 通讯作者:
    Raymundo Arroyave
Phase-field model of silicon carbide growth during isothermal condition
等温条件下碳化硅生长的相场模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Elias J. Munoz;V. Attari;Marco C. Martinez;Matthew B. Dickerson;M. Radovic;Raymundo Arroyave
  • 通讯作者:
    Raymundo Arroyave
Functionally graded NiTiHf high-temperature shape memory alloys using laser powder bed fusion: localized phase transformation control and multi-stage actuation
采用激光粉末床熔融技术的功能梯度 NiTiHf 高温形状记忆合金:局部相变控制和多级驱动
  • DOI:
    10.1016/j.actamat.2025.121175
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Abdelrahman Elsayed;Taresh Guleria;Haoyi Tian;Bibhu P. Sahu;Kadri C. Atli;Alaa Olleak;Alaa Elwany;Raymundo Arroyave;Dimitris Lagoudas;Ibrahim Karaman
  • 通讯作者:
    Ibrahim Karaman
On the kinetics of electrodeposition in a magnesium metal anode
镁金属阳极电沉积动力学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    V. Attari;Sarbajit Banerjee;Raymundo Arroyave
  • 通讯作者:
    Raymundo Arroyave

Raymundo Arroyave的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raymundo Arroyave', 18)}}的其他基金

DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
  • 批准号:
    2323611
  • 财政年份:
    2024
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Continuing Grant
DMREF: AI-Guided Accelerated Discovery of Multi-Principal Element Multi-Functional Alloys
DMREF:人工智能引导加速多主元多功能合金的发现
  • 批准号:
    2119103
  • 财政年份:
    2021
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Continuing Grant
CDS&E: Efficient Uncertainty Analysis in Multi-physics Phase Field Models of Microstructure Evolution
CDS
  • 批准号:
    2001333
  • 财政年份:
    2021
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Continuing Grant
Probing Microstructure-Martensitic Transformation Couplings in Metamagnetic Shape Memory Alloys
探测变磁形状记忆合金中的微观结构-马氏体相变耦合
  • 批准号:
    1905325
  • 财政年份:
    2019
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
S&AS: INT: Autonomous Experimentation Platform for Accelerating Manufacturing of Advanced Materials
S
  • 批准号:
    1849085
  • 财政年份:
    2019
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Planning Grant: Engineering Research Center for Advanced Materials Manufacturing and Discovery for Extreme Environments (CAM2DE2)
规划资助:极端环境先进材料制造与发现工程研究中心(CAM2DE2)
  • 批准号:
    1840598
  • 财政年份:
    2018
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
DMREF: Accelerating the Development of High Temperature Shape Memory Alloys
DMREF:加速高温形状记忆合金的开发
  • 批准号:
    1534534
  • 财政年份:
    2015
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
NRT-DESE: Data-Enabled Discovery and Design of Energy Materials
NRT-DESE:基于数据的能源材料发现和设计
  • 批准号:
    1545403
  • 财政年份:
    2015
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Study of Low Volume Solder Interconnects for 3D Integrated Circuit Packaging
合作研究:3D 集成电路封装小体积焊料互连的计算研究
  • 批准号:
    1462255
  • 财政年份:
    2015
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
I-Corps: Tailored Thermal Expansion Alloys
I-Corps:定制热膨胀合金
  • 批准号:
    1357551
  • 财政年份:
    2013
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant

相似海外基金

Fundamental Structural Studies of Polymers in Fuel Cell/Green Hydrogen Applications
燃料电池/绿色氢应用中聚合物的基础结构研究
  • 批准号:
    2902157
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Studentship
Fundamental research on multifunctional structure that enables vibration attenuation and structural diagnosis with no power supply
无电源减振及结构诊断多功能结构基础研究
  • 批准号:
    23H01366
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Fundamental Technologies for Similarity Search of Human Genome Structural Variant Data
人类基因组结构变异数据相似性搜索基础技术的开发
  • 批准号:
    23K11319
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental Processes of Instantaneous Structural Transformation of Crystal Defects Using Synergistic Effects of Irradiation Damage and Localized Laser Heating
利用辐照损伤和局部激光加热协同效应实现晶体缺陷瞬时结构转变的基本过程
  • 批准号:
    22K04783
  • 财政年份:
    2022
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Randomized Controlled Trial of Concentrated Investment in Black Neighborhoods to Address Structural Racism as a Fundamental Cause of Poor Health
集中投资黑人社区以解决结构性种族主义作为健康状况不佳的根本原因的随机对照试验
  • 批准号:
    10831879
  • 财政年份:
    2021
  • 资助金额:
    $ 44.01万
  • 项目类别:
A Randomized Controlled Trial of Concentrated Investment in Black Neighborhoods to Address Structural Racism as a Fundamental Cause of Poor Health
集中投资黑人社区以解决结构性种族主义作为健康状况不佳的根本原因的随机对照试验
  • 批准号:
    10413510
  • 财政年份:
    2021
  • 资助金额:
    $ 44.01万
  • 项目类别:
Fundamental research on For-sale Housing Project by Dojunkai – Focused on structural surveys
同润会对出售住宅项目的基础研究
  • 批准号:
    19K04827
  • 财政年份:
    2019
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental and clinical study of fractional fiow reserve using structural and fluid analysis in Coronary CT
使用冠状动脉 CT 中的结构和流体分析进行血流储备分数的基础和临床研究
  • 批准号:
    18K07720
  • 财政年份:
    2018
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental Understanding of Deformation in High Entropy Structural Alloys
高熵结构合金变形的基本理解
  • 批准号:
    1562288
  • 财政年份:
    2016
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Fundamental Understanding on the Role of Structural Defects on Lithiation of Nanoscale Transition Metal Oxides
结构缺陷对纳米过渡金属氧化物锂化作用的基本认识
  • 批准号:
    1620901
  • 财政年份:
    2015
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了