DMREF: Computational Discovery of Polymeric Membranes for Dehydration of Polar Solvents
DMREF:用于极性溶剂脱水的聚合物膜的计算发现
基本信息
- 批准号:2119575
- 负责人:
- 金额:$ 165.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYMembrane-based separations have revolutionized some industries (e.g., seawater desalination) and have the potential to drive numerous applications towards more energy efficient and sustainable processes. In chemical separations, which are typically highly energy intensive and account for greater than 5% of the annual primary energy consumption in the U.S., membrane-based approaches have significant potential to reduce both energy utilization and capital cost. However, membranes for the separation of mixed solvents, while practically important, are technically challenging as differentiating between the transport of small molecules that have subtle differences in properties is required. The rational design of the next generation of membranes for such separations is a significant challenge, given the vast chemical and design space, but could be realized by Materials Genome Initiative (MGI)-inspired screening. That is, the MGI-style of this effort could alter the current, long-standing membrane development paradigm. In this work, functionality- and performance-driven screening, with close coupling between simulations and experiment, will result in the design and fabrication of high-performance membranes tailored for targeted separations. Specifically, the dehydration of polar solvents by pervaporation will be targeted as an overarching initial target. This is because the discovery and deployment of effective new materials will eliminate the need for high-cost and high-energy separations and enable effective solvent reuse for sustainable manufacturing.TECHNICAL SUMMARYThis effort will develop an integrated, MGI-inspired computational and experimental screening platform with the goal of accelerating the rational design of membranes for the dehydration of polar solvents. This will be achieved through the combination of extensive molecular simulations using the Molecular Simulation and Design Framework (MoSDeF); machine learning using DeepForge; syntheses based around the combination of ring-opening metathesis polymerization chemistry combined with spin coating; experimental characterization; and in operando evaluation in a pervaporation process. This molecule-to-process approach will enable the synthesis of a wide array of polymer membrane compositions from a common central scaffold. Moreover, there will be an integral synergy between molecular-level screening simulations and experiment to molecularly design and identify new membranes that are tailored to specific dehydration separations. The goals of this project are the identification, synthesis, characterization, and testing of new candidate polymers for polar organic solvent-water membrane separations, development of a robust library of polymer membrane properties, development of machine learning models that relate chemistry to measured properties of membrane films, and the release of a generally applicable set of software tools that will enable rapid screening and machine learning studies on soft matter systems. Additionally, this effort, with its integration of computational modeling, machine learning, material synthesis, characterization, and performance evaluation for targeted separations, will serve as an excellent educational platform for participating graduate students and postdoctoral researchers to experience the full suite of interconnected components described in the MGI vision. By developing competency in the three foundational pillars of experiment, computation, and data science, the project will develop a workforce aligned with the MGI model. Also, multiple integrated educational activities at the undergraduate and K-12 levels will highlight the potential of computational materials science and the need for close coupling with experiment and data science, inspiring the next generation of the MGI workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性SUMMARY基于膜的分离已经彻底改变了一些行业(例如,海水淡化),并有可能推动许多应用朝着更节能和更可持续的过程发展。在化学分离中,通常是高耗能的,占美国每年一次能源消耗的5%以上,基于膜的方法在降低能源利用率和资本成本方面具有巨大的潜力。然而,用于分离混合溶剂的膜虽然在实际中很重要,但在技术上具有挑战性,因为需要区分具有细微性质差异的小分子的传输。考虑到巨大的化学和设计空间,合理设计用于此类分离的下一代膜是一个巨大的挑战,但可以通过材料基因组倡议(MGI)启发的筛选来实现。也就是说,这种MGI风格的努力可能会改变目前长期存在的膜开发范式。在这项工作中,功能和性能驱动的筛选,以及模拟和实验之间的紧密耦合,将导致为靶向分离量身定做的高性能膜的设计和制造。具体地说,通过渗透汽化使极性溶剂脱水将是首要的初始目标。这是因为有效的新材料的发现和部署将消除对高成本和高能分离的需求,并使溶剂能够有效地重复用于可持续制造。技术总结这项工作将开发一个集成的、受MGI启发的计算和实验筛选平台,目标是加速极性溶剂脱水膜的合理设计。这将通过使用分子模拟和设计框架(MoSDeF)的广泛分子模拟、使用DeepForge的机器学习、基于开环歧化聚合化学与旋涂相结合的合成、实验表征以及渗透汽化过程中的操作评估相结合来实现。这种分子到过程的方法将使从公共中心支架合成广泛的聚合物膜组合物成为可能。此外,在分子水平的筛选模拟和实验之间将有一个完整的协同作用,以分子设计和识别为特定脱水分离量身定做的新膜。该项目的目标是识别、合成、表征和测试用于极性有机溶剂-水膜分离的新的候选聚合物,开发强大的聚合物膜性能库,开发将化学与膜的测量性能相关联的机器学习模型,并发布一套普遍适用的软件工具,使软物质系统的快速筛选和机器学习研究成为可能。此外,这项工作结合了针对定向分离的计算建模、机器学习、材料合成、表征和性能评估,将为参与的研究生和博士后研究人员提供一个极好的教育平台,以体验MGI愿景中描述的全套相互关联的组件。通过培养实验、计算和数据科学这三个基本支柱的能力,该项目将培养一支与MGI模式相一致的劳动力队伍。此外,本科生和K-12年级的多项综合教育活动将突出计算材料科学的潜力,以及与实验和数据科学紧密结合的必要性,激励下一代MGI工作人员。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gannon Jennings其他文献
Gannon Jennings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gannon Jennings', 18)}}的其他基金
Dynamic Molecular Switching for Environmentally Adaptive Surfaces
环境适应性表面的动态分子开关
- 批准号:
2052438 - 财政年份:2021
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
Poly(ionic liquid) Brush-like Coatings for Rolling and Sliding Lubrication
用于滚动和滑动润滑的聚(离子液体)刷状涂层
- 批准号:
1300406 - 财政年份:2013
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
Superhydrophobic Veneers: Surface Coatings Inspired by Nature
超疏水贴面:受大自然启发的表面涂层
- 批准号:
1134509 - 财政年份:2011
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
Linear and Side-Functionalized Macromolecular Adsorbates for Enhanced Versatility in the Self-Assembly at Surfaces
线性和侧官能化大分子吸附剂可增强表面自组装的多功能性
- 批准号:
0731168 - 财政年份:2007
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
pH-Responsive Polymer Films and Surfaces
pH 响应性聚合物薄膜和表面
- 批准号:
0522937 - 财政年份:2005
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
EXPLORATORY: Environmentally Friendly Formation of Self-Assembled Monolayers and Surface-Initiated Polymer Films in Carbon Dioxide
探索性:在二氧化碳中环保地形成自组装单分子层和表面引发聚合物薄膜
- 批准号:
0203183 - 财政年份:2001
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
Water-Borne Self-Assembled Monolayers and Films
水性自组装单层膜和薄膜
- 批准号:
9983966 - 财政年份:2000
- 资助金额:
$ 165.59万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CC* Campus Compute: Building a Computational Cluster for Scientific Discovery
CC* 校园计算:构建科学发现计算集群
- 批准号:
2346673 - 财政年份:2024
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
Computational modelling of disease progression and subtype discovery in Alzheimer's Disease
阿尔茨海默病疾病进展和亚型发现的计算模型
- 批准号:
2885305 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Studentship
Computational modelling of Bicyclic peptides to accelerate anti-infective discovery
双环肽的计算模型加速抗感染药物的发现
- 批准号:
2884059 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Studentship
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Continuing Grant
Development of knowledge-based computational method for drug discovery targeting cryptic pockets
开发基于知识的计算方法,用于针对神秘口袋的药物发现
- 批准号:
23K06085 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAS: Computational Data-Driven Metal-Free Catalysts Discovery for Small Molecule Activation and Conversion
CAS:计算数据驱动的无金属催化剂发现,用于小分子活化和转化
- 批准号:
2247481 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
- 批准号:
2243706 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Continuing Grant
SBIR Phase II: An omics-based computational drug design and discovery platform for next generation microbiome therapeutics
SBIR II 期:基于组学的计算药物设计和发现平台,用于下一代微生物组疗法
- 批准号:
2228069 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Cooperative Agreement
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
- 批准号:
2243704 - 财政年份:2023
- 资助金额:
$ 165.59万 - 项目类别:
Standard Grant