Measuring and Reducing Algorithmic Discrimination with Quasi-Experimental Data

用准实验数据测量和减少算法歧视

基本信息

  • 批准号:
    2119849
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This research project will develop new tools to measure and reduce algorithmic discrimination in several high-stakes settings. Algorithms guide an increasingly large number of decisions. Alongside this rise is a concern that algorithmic decision-making will entrench or worsen discrimination against legally protected groups. However, quantifying algorithmic discrimination is often hampered by a selection challenge: an individual's qualification for a decision, which is often used to define discrimination, is typically only available for the group of individuals who were selected for treatment by an existing human or algorithmic decision-maker. This project will overcome this fundamental selection challenge by developing new tools to measure algorithmic discrimination. The project also will develop alternative algorithms that minimize or reduce discrimination. The researchers will apply these tools in multiple high-stakes settings, including pretrial detention, employment screening, medical testing, and child welfare investigations. The research is of considerable policy interest given the rapid adoption of algorithms in a variety of settings. The investigators are committed to increasing diversity in the economics research community by recruiting, training, and mentoring women, under-represented minorities, and first-generation college students as undergraduate research assistants and predoctoral fellows. Code produced by this project will be made publicly available.This research project will develop tools to measure algorithmic discrimination. The project also will develop alternative non-discriminatory algorithms when qualification is unobserved for a subset of individuals. For example, in the employment context, whether an individual would be hired after an interview is not observed for applicants screened out before the interview is held. The investigators will show that this selection challenge can be overcome with knowledge of average qualification rates across different groups. Further, these average qualification rates can be estimated by utilizing random assignment of decision-makers to individuals. This insight can be used not only to measure algorithmic discrimination, but to develop alternative algorithms that reduce or eliminate discrimination. The project will consider several extensions. The investigators will utilize experimentation to measure algorithmic discrimination and improve accuracy. The interaction between algorithms and human decision-making also will be explored, as human discretion remains important in most real-world settings. The results of this research will have implications for more accurately quantifying the trade-offs between algorithmic transparency, accuracy, and fairness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发新的工具来衡量和减少几个高风险环境中的算法歧视。算法引导着越来越多的决策。与此同时,人们还担心算法决策将加剧或加剧对受法律保护群体的歧视。然而,量化算法歧视往往受到选择挑战的阻碍:通常用于定义歧视的个人决策资格通常仅适用于由现有人类或算法决策者选择进行治疗的一组个人。该项目将通过开发衡量算法歧视的新工具来克服这一基本选择挑战。该项目还将开发替代算法,以最大限度地减少或减少歧视。研究人员将把这些工具应用于多种高风险环境,包括审前拘留、就业筛选、医学检测和儿童福利调查。鉴于算法在各种情况下的迅速采用,这项研究具有相当大的政策意义。研究人员致力于通过招募、培训和指导女性、代表性不足的少数民族和第一代大学生作为本科生研究助理和博士前研究员,增加经济学研究界的多样性。这个项目产生的代码将会公开。这个研究项目将开发工具来衡量算法歧视。该项目还将开发替代的非歧视性算法,当个人的子集没有资格时。例如,在招聘方面,在面试前筛选出来的申请人在面试后是否会被雇用,并不会被观察。研究人员将表明,这种选择的挑战可以克服知识的平均合格率在不同的群体。此外,这些平均合格率可以通过利用随机分配决策者到个人来估计。这种见解不仅可以用来衡量算法歧视,还可以用来开发减少或消除歧视的替代算法。该项目将考虑几项扩展。研究人员将利用实验来衡量算法的区别并提高准确性。算法和人类决策之间的相互作用也将被探索,因为人类的自由裁量权在大多数现实环境中仍然很重要。这项研究的结果将对更准确地量化算法透明度、准确性和公平性之间的权衡产生影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Will Dobbie其他文献

Building Non-Discriminatory Algorithms in Selected Data
在选定的数据中构建非歧视性算法
Information Asymmetries in Consumer Credit Markets: Evidence from Two Payday Lending Firms
消费信贷市场的信息不对称:来自两家发薪日贷款公司的证据
Replication data for: The Causes and Consequences of Test Score Manipulation: Evidence from the New York Regents Examinations
复制数据:考试成绩操纵的原因和后果:来自纽约摄政考试的证据
  • DOI:
    10.3886/e116361v1
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Dee;Will Dobbie;B. Jacob;Jonah E. Rockoff
  • 通讯作者:
    Jonah E. Rockoff
The Medium-Term Impacts of High-Achieving Charter Schools on Non-Test Score Outcomes
高成就特许学校对非考试成绩结果的中期影响
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Will Dobbie;Roland G. Fryer
  • 通讯作者:
    Roland G. Fryer
NBER WORKING PAPER SERIES THE EFFECTS OF PRE-TRIAL DETENTION ON CONVICTION, FUTURE CRIME, AND EMPLOYMENT: EVIDENCE FROM RANDOMLY ASSIGNED JUDGES
NBER 工作文件系列 审前拘留对定罪、未来犯罪和就业的影响:来自随机指定法官的证据
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Will Dobbie;Jacob Goldin;Crystal S. Yang;Amanda Agan;Adam Cox;Hank Farber;Louis Kaplow;Adam Looney;Alex Mas;M. Mogstad;Michael Mueller;Erin Murphy;S. Shavell;Megan Stevenson;Molly Bunke;Kevin DeLuca;Sabrina Lee
  • 通讯作者:
    Sabrina Lee

Will Dobbie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Multi-component interventions to reducing unhealthy diets and physical inactivity among adolescents and youth in sub-Saharan Africa (Generation H)
采取多方干预措施减少撒哈拉以南非洲青少年的不健康饮食和缺乏身体活动(H 代)
  • 批准号:
    10106976
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    EU-Funded
Reducing the cost of fuel cell components and pilot production of bipolar plate coatings
降低燃料电池组件成本并试产双极板涂料
  • 批准号:
    10088165
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative R&D
Lead in Drinking Water: Reducing/Replacing Phosphate Dosing
饮用水中的铅:减少/替代磷酸盐剂量
  • 批准号:
    2907425
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Reducing Harm In Ventilated Patients: First In-patient Evaluation Of A Smart Endotracheal Tube
减少通气患者的伤害:智能气管插管的首次住院评估
  • 批准号:
    MR/Y008642/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
A novel medical device for reducing chemotherapy-induced peripheral neuropathy in the hands
一种减少化疗引起的手部周围神经病变的新型医疗设备
  • 批准号:
    MR/Z503800/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
CAREER: Understanding and Reducing Inequality in the Returns to K-12 STEM for College and Early Career Outcomes
职业:了解并减少 K-12 STEM 大学和早期职业成果回报的不平等
  • 批准号:
    2338923
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Novel species of N2O-reducing rhizobia: exploring the host range and N2O mitigation potential
减少 N2O 的根瘤菌新物种:探索寄主范围和 N2O 减排潜力
  • 批准号:
    24K17806
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference on Science and Law of Sea Level Rise: Reducing Legal Obstacles to Managing Rising Seas; Fort Lauderdale, Florida; Spring 2024
海平面上升科学与法律会议:减少管理海平面上升的法律障碍;
  • 批准号:
    2330829
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CRII: SHF: Theoretical Foundations of Verifying Function Values and Reducing Annotation Overhead in Automatic Deductive Verification
CRII:SHF:自动演绎验证中验证函数值和减少注释开销的理论基础
  • 批准号:
    2348334
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Reducing organ fibrosis by targeting a novel pro-fibrotic CLEC4D expressing myeloid subset.
通过靶向表达新型促纤维化 CLEC4D 的骨髓亚群来减少器官纤维化。
  • 批准号:
    MR/Y014103/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了