Digitization and Analysis of the Bills of Mortality Data Set

死亡账单数据集的数字化和分析

基本信息

  • 批准号:
    2120311
  • 负责人:
  • 金额:
    $ 44.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

One of the most dreaded diseases in early modern England was plague. The city of London alone lost an estimated 225,000 people to plague in the century between 1563 and 1665. As an extension of government attempts to track plague deaths during outbreaks, London officials started publicly distributing a weekly series of mortality statistics called the Bills of Mortality at the turn of the seventeenth century. London's population rapidly embraced the bills as a tool for evaluating their risk of imminent death, which led to the bills' continuous weekly publication starting in 1603. These public bills also contained all-inclusive death counts and numbers for dozens of other causes of death, ensuring their ongoing publication and widespread distribution for over a century after the final outbreak of plague in England. This project uses the Bills of Mortality to investigate how lived experiences of plague outbreaks intersected with an emerging quantitative mentality among the people of early modern England. It examines how ordinary people aggregated, transformed, and interpreted death counts in order to draw conclusions about changes in the early modern use of and trust in numbers over time. In doing so, the project investigates contemporary perceptions of numbers and historicizes a quantitative method of knowledge generation that has become central to twenty-first-century understandings of the world.The foundation of this project is the Bills of Mortality dataset, created through the digitization of primary sources and their subsequent transcription in DataScribe: specialized software designed to create validated structured datasets from historical sources. The project deploys custom Python code on this dataset to assess the arithmetical accuracy of bills' internal calculations and their summary statistics. It combines this assessment with close reading of historical sources in order draw conclusions about early modern use of and trust in numbers. Underlying these analyses are two questions: (1) Did people put their trust in the authority of the bills' internal sums and extracted summary statistics because of the mathematical accuracy of their compilation, reflecting a belief in the importance of correctly quantifying mortality for assessing risk? (2) Did people put their trust in the bills' numbers because they were numbers, seeing the bills and their mortality statistics as an inherently trustworthy form of knowledge because of its numerical basis? In exploring these questions, this project expands ongoing discussions in the histories of epistemology, mathematics, medicine, and public health, and provides novel insights into people's changing perceptions of and reactions to the quantification of risk and mortality within the greater context of the changing numerical landscape of early modern England. The project also supports a variety of secondary and student-driven analyses on the dataset as part of publishing and publicizing the myriad potential reuses for this longitudinal dataset of mortality in a pre-modern city. Through the inclusion of students and their research interests, the project models interdisciplinary paths for students interested in both historical and STEM research and demonstrates the myriad career and research options available at the intersection of history and STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代早期英国最可怕的疾病之一是瘟疫。仅伦敦一个城市在1563年至1665年的世纪就有大约225,000人死于瘟疫。作为政府追踪鼠疫爆发期间死亡人数的延伸,伦敦官员从世纪之交开始每周公开发布一系列死亡率统计数据,称为死亡率清单。伦敦的居民迅速接受了这些法案,将其作为评估他们即将死亡的风险的工具,这导致了从1603年开始,这些法案连续每周出版。这些公共法案还包含了包括所有死亡人数和数十种其他死亡原因的数字,确保了它们在英格兰最后一次鼠疫爆发后的世纪内持续出版和广泛传播。这个项目使用死亡率的账单来调查鼠疫爆发的生活经历是如何与现代早期英格兰人民中新兴的量化心态相结合的。它考察了普通人如何汇总,转换和解释死亡人数,以得出关于早期现代使用和信任数字随时间变化的结论。在此过程中,该项目调查了当代人对数字的看法,并将一种知识生成的定量方法历史化,这种方法已成为世纪对世界的理解的核心。该项目的基础是死亡率数据集,该数据集是通过对主要来源进行数字化并随后在DataScribe中转录而创建的。DataScribe是一种专门的软件,旨在从历史来源创建经过验证的结构化数据集。该项目在此数据集上部署自定义Python代码,以评估账单内部计算及其汇总统计的算术准确性。它结合了这种评估与密切阅读的历史资料,以得出结论,早期现代使用和信任的数字。这些分析背后有两个问题:(1)人们是否因为其编制的数学准确性而信任法案的内部总和和提取的汇总统计数据的权威性,反映了正确量化死亡率对评估风险的重要性的信念?(2)人们是否因为账单上的数字是数字而信任它们,是否因为它们的数字基础而将账单及其死亡率统计视为一种内在的可信赖的知识形式?在探索这些问题,该项目扩大了正在进行的讨论,在认识论,数学,医学和公共卫生的历史,并提供了新的见解,人们不断变化的看法和反应的风险和死亡率的量化范围内的更大的背景下,不断变化的数字景观的早期现代英格兰。该项目还支持对数据集进行各种次要和学生驱动的分析,作为发布和宣传前现代城市中死亡率纵向数据集的无数潜在重用的一部分。通过纳入学生和他们的研究兴趣,该项目为对历史和STEM研究感兴趣的学生提供了跨学科的途径,并展示了历史和STEM交叉点的无数职业和研究选择。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessica Otis其他文献

Jessica Otis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
  • 批准号:
    ES/Y004906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
  • 批准号:
    2334874
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    $ 44.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了