Collaborative Research: CCRI: New: Medium: A Development and Experimental Environment for Privacy-preserving and Secure (DEEPSECURE) Machine Learning

合作研究:CCRI:新:媒介:隐私保护和安全(DEEPSECURE)机器学习的开发和实验环境

基本信息

  • 批准号:
    2120369
  • 负责人:
  • 金额:
    $ 52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

While machine learning (ML) is embraced as an important tool for various science, engineering, medical, finance, and homeland security applications, it is becoming an increasingly attractive target for cybercriminals. DEEPSECURE is a first-of-its-kind development and experimental platform to support secure and privacy-preserving ML research. With its novel modular design integrated with fully customizable function blocks and sample modules, DEEPSECURE is a game-changing tool to effectively support research in this emerging field by enabling fast design, prototyping, evaluation, and re-innovation of trust-worthy ML applications. It enables a variety of compelling new research projects that focus on ML security and privacy, leading to breakthroughs to protect ML systems and accelerating their development and widening their adoption. It will contribute significantly to the protection of the future cyber and physical world and safeguard human society. DEEPSECURE receives strong community support from over 20 key stakeholders across the country. The project includes significant efforts for fostering and sustaining an ML security and privacy research community, including monthly virtual open forums to provide a regular update to and seek feedback from the community, quarterly advisory board meetings, annual symposiums, and a training workshop series. The project includes specific measures and plans for inspiring the participation of underrepresented groups and infusing diversity and inclusion in all DEEPSECURE events and activities. The project output includes an open-source and easy-to-use learning platform for curriculum development and workforce training. To support building a sustainable workforce development pipeline, the project team participates in the existing annual GenCyber summer camps for K-12 students and a Cyber Saturday series to introduce cybersecurity and AI career paths and educational resources to K-12 school counselors, teachers, students, and parents.Recent development in privacy-preserving and secure ML draws expertise from both ML and security/privacy to tackle the multi-faceted problem. However, the research community is facing fundamental challenges in this emerging area due to its interdisciplinary nature. On the one hand, although deep learning frameworks such as Pytorch and Tensorflow have been made widely available, a critical hurdle faced by ML researchers is the steep learning curve to effectively use security techniques and libraries to tackle ML security and privacy problems. On the other hand, while the security community has developed highly efficient cryptographic libraries, it remains nontrivial to integrate them into deep learning models to achieve a computation efficiency suited for practical applications. The overarching goal of the project is to close the gap by developing DEEPSECURE, which integrates a spectrum of essential functions and building blocks that are ready-to-use to flatten the learning curve for researchers coming from both ML and security/privacy communities. At the same time, DEEPSECURE is fully customizable and scalable, enabling deep and fundamental research toward privacy-preserving and secure ML. To meet the overarching goal, specific project objectives include: (1) acquiring a scalable and re-configurable compute environment based on the latest Dell, AMD, and Nvidia technologies to establish the DEEPSECURE hardware infrastructure across the campuses of Old Dominion University and University of Buffalo; (2) developing a new software platform to support DEEPSECURE SDE (Software Development Environment) and MEC (Multi-user Experimental Chamber). The platform is integrated with PyTorch to enable great usability for both beginners and advanced researchers and feature a scalable and customizable modular framework with seamlessly integrated libraries, function blocks, and sample modules; (3) promoting DEEPSECURE across the nation to ensure broad participation, collaboration, and sharing; (4) leveraging DEEPSECURE to foster a long-lasting, self-sustainable ML security and privacy research community that engages all stakeholders in a sustained and ongoing way; and last but not least, (5) educating and training diverse cybersecurity workforce to safeguard the future intelligent cyber systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然机器学习(ML)被视为各种科学、工程、医疗、金融和国土安全应用的重要工具,但它正成为网络犯罪分子越来越有吸引力的目标。DEEPSECURE是首个支持安全和隐私保护ML研究的开发和实验平台。凭借其新颖的模块化设计,集成了完全可定制的功能块和示例模块,DEEPSECURE是一个改变游戏规则的工具,通过实现可信赖的ML应用程序的快速设计,原型设计,评估和再创新,有效地支持这一新兴领域的研究。它使各种引人注目的新研究项目成为可能,这些项目专注于ML安全和隐私,从而在保护ML系统方面取得突破,加速其开发并扩大其采用。它将为保护未来的网络和物理世界,维护人类社会做出重大贡献。DEEPSECURE得到了全国20多个主要利益相关者的强有力的社区支持。该项目包括培养和维持ML安全和隐私研究社区的重大努力,包括每月虚拟开放论坛,以提供定期更新并寻求社区反馈,季度咨询委员会会议,年度研讨会和培训研讨会系列。该项目包括具体措施和计划,以鼓励代表性不足的群体参与,并在所有DEEPSECURE活动中注入多样性和包容性。该项目的产出包括一个用于课程编制和劳动力培训的开放源码和易于使用的学习平台。为了支持建立可持续的劳动力发展管道,项目团队参加了现有的K-12学生年度GenCyber夏令营和Cyber Saturday系列,向K-12学校辅导员,教师,学生,隐私保护和安全ML的最新发展吸引了ML和安全/隐私的专业知识来解决多方面的问题。然而,由于其跨学科性质,研究界在这一新兴领域面临着根本性的挑战。 一方面,尽管Pytorch和Tensorflow等深度学习框架已经广泛使用,但ML研究人员面临的一个关键障碍是有效使用安全技术和库来解决ML安全和隐私问题的陡峭学习曲线。另一方面,虽然安全社区已经开发了高效的加密库,但将它们集成到深度学习模型中以实现适合实际应用的计算效率仍然是不平凡的。该项目的总体目标是通过开发DEEPSECURE来缩小差距,DEEPSECURE集成了一系列基本功能和构建块,这些功能和构建块可以随时使用,以使来自ML和安全/隐私社区的研究人员的学习曲线变平。与此同时,DEEPSECURE是完全可定制和可扩展的,可以对隐私保护和安全ML进行深入的基础研究。为了实现总体目标,具体的项目目标包括:(1)获得基于最新的戴尔、AMD和Nvidia技术的可扩展和可重新配置的计算环境,以在Old自治领大学和布法罗大学的校园内建立DEEPSECURE硬件基础架构;(2)开发了支持DEEPSECURE软件开发环境(Software Development Environment)和多用户实验室(Multi-user Experimental Chamber)的软件平台。该平台与PyTorch集成,为初学者和高级研究人员提供了很好的可用性,并具有可扩展和可定制的模块化框架,无缝集成了库,功能块和示例模块;(3)在全国范围内推广DEEPSECURE,以确保广泛的参与,协作和共享;(4)利用DEEPSECURE来培育一个持久的、自我可持续的ML安全和隐私研究社区,以持续和持续的方式吸引所有利益相关者;最后但并非最不重要的是,(5)教育和培训多样化的网络安全人员,以保护未来的智能网络系统。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Can We Use Arbitrary Objects to Attack LiDAR Perception in Autonomous Driving?
Understanding and Measuring Robustness of Vision and Language Multimodal Models
理解和测量视觉和语言多模态模型的鲁棒性
BYOZ: Protecting BYOD Through Zero Trust Network Security
BYOZ:通过零信任网络安全保护 BYOD
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anderson, John;Huang, Qiqing;Cheng, Long;Hu, Hongxin
  • 通讯作者:
    Hu, Hongxin
xNIDS: Explaining Deep Learning-based Network Intrusion Detection Systems for Active Intrusion Responses
SysFlow: Toward a Programmable Zero Trust Framework for System Security
  • DOI:
    10.1109/tifs.2023.3264152
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Sungmin Hong;Lei Xu;Jianwei Huang;Hongda Li;Hongxin Hu;G. Gu
  • 通讯作者:
    Sungmin Hong;Lei Xu;Jianwei Huang;Hongda Li;Hongxin Hu;G. Gu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chunming Qiao其他文献

Decentralized Machine Learning Through Experience-Driven Method in Edge Networks
通过边缘网络中的经验驱动方法进行去中心化机器学习
Demo: Attacking LiDAR Semantic Segmentation in Autonomous Driving
演示:攻击自动驾驶中的 LiDAR 语义分割
Integrating Coflow and Circuit Scheduling for Optical Networks
集成光网络协流和电路调度
Achieving Fine-Grained Flow Management Through Hybrid Rule Placement in SDNs
通过 SDN 中的混合规则放置实现细粒度流量管理
Spectrum allocation in spectrum-sliced elastic optical path networks using traffic prediction
  • DOI:
    10.1007/s11107-015-0489-z
  • 发表时间:
    2015-03-24
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Sunny Shakya;Xiaojun Cao;Zilong Ye;Chunming Qiao
  • 通讯作者:
    Chunming Qiao

Chunming Qiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chunming Qiao', 18)}}的其他基金

PFI-TT: Crowdsourced Road Geometry Estimation using Smartphones
PFI-TT:使用智能手机进行众包道路几何估计
  • 批准号:
    2044670
  • 财政年份:
    2021
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SCC-IRG Track 2: Towards Quality Aware Crowdsourced Road Sensing for Smart Cities
SCC-IRG 第 2 轨:迈向智慧城市的质量意识众包道路传感
  • 批准号:
    1737590
  • 财政年份:
    2017
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
MRI: Development of iCAVE2 (Instrument for Connected and Autonomous Vehicle Evaluation and Experimentation)
MRI:开发 iCAVE2(联网和自动驾驶车辆评估和实验仪器)
  • 批准号:
    1626374
  • 财政年份:
    2016
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Preserving User Privacy in Server-driven Dynamic Spectrum Access System
合作研究:在服务器驱动的动态频谱接入系统中保护用户隐私
  • 批准号:
    1547223
  • 财政年份:
    2016
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: RIPS Type 2: Strategic Analysis and Design of Robust and Resilient Interdependent Power and Communications Networks
合作研究:RIPS 类型 2:稳健且有弹性的相互依赖的电力和通信网络的战略分析和设计
  • 批准号:
    1441284
  • 财政年份:
    2014
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
CSR:Medium:Collaborative Research: An Analytical Approach to Quantifying Availability (AQUA) for Cloud Resource Provisioning and Allocation
CSR:中:协作研究:量化云资源配置和分配的可用性 (AQUA) 的分析方法
  • 批准号:
    1409809
  • 财政年份:
    2014
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
CPS: Medium: Addressing Design and Human Factors Challenges in Cyber Transportation Systems
CPS:中:解决网络运输系统中的设计和人为因素挑战
  • 批准号:
    1035733
  • 财政年份:
    2010
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
EAGER: Create a Socially-aware Single System Image (S3I) in GENI
EAGER:在 GENI 中创建具有社交意识的单一系统映像 (S3I)
  • 批准号:
    1049775
  • 财政年份:
    2010
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
SGER-Explorying Sociological Orbits in Mobile Users' Mobility Pattern
SGER-探索移动用户移动模式中的社会学轨道
  • 批准号:
    0553273
  • 财政年份:
    2005
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS-NR: Ultra-Broadband Optical Wireless Communication Networks
合作研究:NeTS-NR:超宽带光无线通信网络
  • 批准号:
    0435155
  • 财政年份:
    2004
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318703
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: NEW: Building a Batteryless Computing Community through Access to Education, Testbeds, and Tools
合作研究:CCRI:新:通过获得教育、测试平台和工具构建无电池计算社区
  • 批准号:
    2235002
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
  • 批准号:
    2235160
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Syntactic Differencing Infrastructure for Software Evolution Research
合作研究:CCRI:新:软件进化研究的句法差异基础设施
  • 批准号:
    2232594
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: CoMIC: A Collaborative Mobile Immersive Computing Research Infrastructure for Multi-user XR
协作研究:CCRI:新:CoMIC:用于多用户 XR 的协作移动沉浸式计算研究基础设施
  • 批准号:
    2235050
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
  • 批准号:
    2235140
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318704
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Grand: Quori 2.0: Uniting, Broadening, and Sustaining a Research Community Around a Modular Social Robot Platform
协作研究:CCRI:盛大:Quori 2.0:围绕模块化社交机器人平台联合、扩大和维持研究社区
  • 批准号:
    2235042
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: Planning-C: A Community for Configurability Open Research and Development (ACCORD)
合作研究:CCRI:Planning-C:可配置性开放研究与开发社区 (ACCORD)
  • 批准号:
    2234909
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了