Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems

协作研究:SaTC:核心:小型:下一代私人学习系统的基础

基本信息

  • 批准号:
    2120603
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Recent advances in large-scale machine learning (ML) promise a range of benefits to society, but also introduce new risks. One major risk is a loss of privacy for the individuals whose data powers the machine learning algorithms. There are now convincing demonstrations that algorithms for machine learning can reveal sensitive information about individuals in their training data by memorizing specific strings of sensitive text such as bank account numbers or through membership-inference attacks. In the recent years, a framework called differential privacy---a mathematically principled, quantitative notion of what it means for an algorithm to ensure privacy for the individuals who contribute training data---has led to significant progress towards privacy in machine learning. This progress offers a proof-of-concept that we can hope to enjoy some of the benefits of using machine learning on sensitive data, while measuring and limiting breaches of confidentiality. This project will investigate and begin to make some of the fundamental advances that are necessary to make differentially private ML a viable technology. The focus will be on laying the groundwork for differentially private ML for entire systems, rather than for standalone tasks, which have been the focus of prior work. This project team comprising researchers with a broad range of expertise in ML, algorithms, systems, and cybersecurity, has planned a set of education tasks: public-facing set of course materials on differentially private machine learning and statistics and and an undergraduate-level textbook on differential privacy.This project includes three technical thrusts that will lay the groundwork for future efforts to build private ML systems. The first thrust will be to improve the foundational algorithms that enable differentially private ML on high-dimensional data. The second thrust will be to build a bridge between algorithms for standalone ML tasks and algorithms for systems-level workloads of ML tasks, by developing differentially private algorithms for training many personalized models, which is a paradigmatic workload in ML. The final thrust will consist of empirical work on auditing differentially private ML methods to understand how the real-world privacy costs compare to those predicted by the theory of differential privacy when these algorithms are used as part of realistic workloads, such as models that are continually updated with new data. This privacy auditing will also facilitate detecting unwanted memorization of training data in machine learning, and also provide more quantitative approaches to auditing differentially private algorithms based on membership-inference and data poisoning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模机器学习(ML)的最新进展为社会带来了一系列好处,但也带来了新的风险。 一个主要的风险是个人隐私的丧失,这些个人的数据为机器学习算法提供了动力。现在有令人信服的证据表明,机器学习算法可以通过记忆特定的敏感文本字符串(如银行账号)或通过成员推断攻击来揭示训练数据中有关个人的敏感信息。近年来,一个名为差分隐私的框架--一个数学原理的定量概念,它意味着一个算法可以确保贡献训练数据的个人的隐私--已经在机器学习的隐私方面取得了重大进展。这一进展提供了一个概念验证,我们可以希望享受在敏感数据上使用机器学习的一些好处,同时测量和限制机密性的泄露。 该项目将调查并开始取得一些必要的基本进展,使差异化私有ML成为可行的技术。 重点将是为整个系统的差异化私有ML奠定基础,而不是为独立任务奠定基础,这是之前工作的重点。 该项目团队由在机器学习、算法、系统和网络安全方面拥有广泛专业知识的研究人员组成,计划了一系列教育任务:面向公众的一套关于差异私有机器学习和统计的课程材料,以及一本关于差异隐私的本科生教科书。该项目包括三个技术方向,将为未来构建私有机器学习系统奠定基础。 第一个重点将是改进基础算法,从而在高维数据上实现差分私有ML。 第二个重点是在独立ML任务的算法和ML任务的系统级工作负载的算法之间建立一座桥梁,通过开发用于训练许多个性化模型的差异化私有算法,这是ML中的典型工作负载。 最后的重点将包括审计差异隐私ML方法的实证工作,以了解当这些算法用作现实工作负载的一部分时,现实世界的隐私成本与差异隐私理论预测的隐私成本相比如何,例如不断更新新数据的模型。该隐私审计还将有助于检测机器学习中训练数据的不必要记忆,并提供更量化的方法来审计基于成员推理和数据中毒的差异隐私算法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differentially Private Medians and Interior Points for Non-Pathological Data
  • DOI:
    10.48550/arxiv.2305.13440
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Aliakbarpour;Rose Silver;T. Steinke;Jonathan Ullman
  • 通讯作者:
    M. Aliakbarpour;Rose Silver;T. Steinke;Jonathan Ullman
From Robustness to Privacy and Back
  • DOI:
    10.48550/arxiv.2302.01855
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hilal Asi;Jonathan Ullman;Lydia Zakynthinou
  • 通讯作者:
    Hilal Asi;Jonathan Ullman;Lydia Zakynthinou
Multitask Learning via Shared Features: Algorithms and Hardness
通过共享特征进行多任务学习:算法和难度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bairaktari, Konstantina;Blanc, Guyl Tan;Ullman, Jonathan;Zakynthinou, Lydia
  • 通讯作者:
    Zakynthinou, Lydia
Chameleon: Increasing Label-Only Membership Leakage with Adaptive Poisoning
  • DOI:
    10.48550/arxiv.2310.03838
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harsh Chaudhari;Giorgio Severi;Alina Oprea;Jonathan R. Ullman
  • 通讯作者:
    Harsh Chaudhari;Giorgio Severi;Alina Oprea;Jonathan R. Ullman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Ullman其他文献

Instance-Optimal Differentially Private Estimation
实例最优差分隐私估计
  • DOI:
    10.48550/arxiv.2210.15819
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Audra McMillan;Adam D. Smith;Jonathan Ullman
  • 通讯作者:
    Jonathan Ullman
How to Combine Membership-Inference Attacks on Multiple Updated Machine Learning Models
如何结合对多个更新的机器学习模型的成员推理攻击
  • DOI:
    10.56553/popets-2023-0078
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Jagielski;Stanley Wu;Alina Oprea;Jonathan Ullman;Roxana Geambasu
  • 通讯作者:
    Roxana Geambasu
An Antifolk Theorem for Large Repeated Games
大型重复博弈的反民俗定理
Privacy and the Complexity of Simple Queries
  • DOI:
  • 发表时间:
    2013-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Ullman
  • 通讯作者:
    Jonathan Ullman
Answering n{2+o(1)} counting queries with differential privacy is hard
  • DOI:
    10.1145/2488608.2488653
  • 发表时间:
    2012-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Ullman
  • 通讯作者:
    Jonathan Ullman

Jonathan Ullman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Ullman', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
  • 批准号:
    2232692
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: A Stable Foundation for Trustworthy Data Analysis
职业:值得信赖的数据分析的稳定基础
  • 批准号:
    1750640
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: New Approaches to Decentralized Differential Privacy
SaTC:核心:小型:去中心化差异隐私的新方法
  • 批准号:
    1816028
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Programming Tools for Adaptive Data Analysis
SHF:小型:协作研究:自适应数据分析的编程工具
  • 批准号:
    1718088
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了