MCA: Leveraging Artificial Intelligence to Enhance the Creativity of the STEM Professional Workforce by Transforming Education for Neurodiverse Learners
MCA:利用人工智能通过改变神经多样化学习者的教育来增强 STEM 专业劳动力的创造力
基本信息
- 批准号:2120888
- 负责人:
- 金额:$ 45.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is funded by the Mid-Career Advancement program that supports opportunities for scientists and engineers to substantively enhance their research program through synergistic and mutually beneficial partnerships. This MCA project embraces a transformative approach to address the critical national need for a creative professional workforce by increasing the participation of neurodiverse students in STEM disciplines. Scientific and technological breakthroughs are crucial to address the large-scale, complex, and multifaceted challenges facing our nation. The unparalleled talents and unique abilities of neurodiverse students present a distinctive opportunity for our nation to address these difficulties. However, the excessive reliance of our STEM education on textual content and the linguistic complexities of STEM texts may disengage and discourage neurodiverse individuals, such as those with dyslexia. This project capitalizes on the unique knowledge and expertise gained from multiple previously NSF-funded projects and a strong multidisciplinary research team with expertise in neurocognitive science, neuroimaging, STEM education, dyslexia, and artificial intelligence (AI). This bold, convergent research builds on the latest advancements in AI as well as opportunities provided by neuroimaging technologies to advance a scalable, personalizable text simplification tool for middle school students with dyslexia. This project will be at the forefront of the shift towards personalized assistive tools to enhance the participation of neurodiverse students in STEM education. The project has the potential to significantly enhance the learning of middle school students with dyslexia, who despite their unique talents in spatial visualization and divergent thinking, remain highly underrepresented in STEM fields. Though this project is focused on individuals with dyslexia, the proposed framework may be further broadened to include other groups, like students with Autism, and English learners (ELs).This project includes three integrated activities to advance knowledge and generate critical data for the development of a personalized assistive tool for students with dyslexia. This project aims to: 1) adapt large pretrained natural language processing (NLP) models for STEM text simplification tasks, 2) develop a large dataset of feedback from students with dyslexia and use reinforcement learning (RL) to customize the model for this population, and 3) use features of electroencephalogram (EEG) data to measure neurocognitive functions related to reading comprehension to personalize the model. The student feedback dataset and individual EEGs collected during the reading tasks may significantly benefit future research in dyslexia, neurocognitive sciences, STEM education, and machine learning. The outcomes of the study may encourage the advancement of personalized learning using brain data. The research partnership formed through this project facilitates the development of large-scale multidisciplinary studies aimed at enhancing the academic success of neurodiverse students. An industry collaborator will be involved early in the project to ensure a broad dissemination of the assistive tool and project outcomes. This project is expected to enhance the well-being of an academically and socially vulnerable group of students by dismantling barriers to participation. The approach of this project may significantly advance the development of personalized assistive learning technologies and present new opportunities for unique students to succeed in our traditional education system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由中期职业发展计划资助,该计划为科学家和工程师提供机会,通过协同和互利的伙伴关系实质性地加强他们的研究计划。这个MCA项目采用了一种变革性的方法,通过增加神经多样性学生在STEM学科的参与,来解决国家对创造性专业劳动力的关键需求。 科学和技术突破对于解决我们国家面临的大规模,复杂和多方面的挑战至关重要。神经多样性学生无与伦比的天赋和独特的能力为我们国家解决这些困难提供了独特的机会。然而,我们的STEM教育对文本内容的过度依赖和STEM文本的语言复杂性可能会使神经多样性个体(如患有阅读障碍的个体)脱离并气馁。该项目利用了从多个以前NSF资助的项目中获得的独特知识和专业知识,以及一支强大的多学科研究团队,该团队在神经认知科学,神经成像,STEM教育,阅读障碍和人工智能(AI)方面具有专业知识。这项大胆、融合的研究建立在人工智能的最新进展以及神经成像技术提供的机会的基础上,为患有阅读障碍的中学生提供了一种可扩展、个性化的文本简化工具。该项目将处于向个性化辅助工具转变的最前沿,以提高神经多样性学生在STEM教育中的参与度。该项目有可能显著提高患有阅读障碍的中学生的学习能力,尽管他们在空间可视化和发散思维方面具有独特的天赋,但在STEM领域仍然存在严重不足。虽然这个计划主要针对有阅读困难的学生,但建议的架构可能会进一步扩大,以包括其他群体,如自闭症学生和英语学习者。这个计划包括三个综合活动,以提高知识和产生关键数据,为有阅读困难的学生开发个性化的辅助工具。该项目旨在:1)将大型预训练自然语言处理(NLP)模型用于STEM文本简化任务,2)开发来自阅读障碍学生的大型反馈数据集,并使用强化学习(RL)为该人群定制模型,以及3)使用脑电图(EEG)数据的特征来测量与阅读理解相关的神经认知功能,以个性化模型。在阅读任务期间收集的学生反馈数据集和个人EEG可能对未来的阅读障碍,神经认知科学,STEM教育和机器学习研究有很大的好处。这项研究的结果可能会鼓励使用大脑数据进行个性化学习。通过该项目形成的研究伙伴关系促进了旨在提高神经多样性学生的学术成功的大规模多学科研究的发展。一名行业合作者将尽早参与项目,以确保广泛传播辅助工具和项目成果。该项目有望通过消除参与障碍,提高在学业和社会上处于弱势地位的学生群体的福祉。该项目的方法可能会大大推进个性化辅助学习技术的发展,并为独特的学生提供新的机会,使他们在我们的传统教育系统中取得成功。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arash Esmaili Zaghi其他文献
Arash Esmaili Zaghi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arash Esmaili Zaghi', 18)}}的其他基金
Encouraging the Participation of Neurodiverse Students in STEM Graduate Programs to Radically Enhance the Creativity of the Professional Workforce
鼓励神经多元化学生参与 STEM 研究生项目,从根本上提高专业劳动力的创造力
- 批准号:
2105721 - 财政年份:2021
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Multi-Hazard Damage to Puerto Rico's Civil Infrastructure - Investigation of the Interactions of 2017 Hurricane Maria and 2020 Earthquake Sequence
快速/协作研究:波多黎各民用基础设施遭受的多重灾害损害 - 调查 2017 年飓风玛丽亚和 2020 年地震序列的相互作用
- 批准号:
2022390 - 财政年份:2020
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
CAREER: Promoting Engineering Innovation Through Increased Neurodiversity by Encouraging the Participation of Students with ADHD
职业:通过鼓励患有多动症的学生参与来增加神经多样性,从而促进工程创新
- 批准号:
1653854 - 财政年份:2017
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
REU Site: Research Experience in Cyber and Civil Infrastructure Security for Students with ADHD: Fostering Innovation
REU 网站:针对多动症学生的网络和民用基础设施安全研究经验:促进创新
- 批准号:
1461165 - 财政年份:2015
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
PFI:AIR - TT: A Hybrid Metal/Glass Composite System for Multihazard Resilient Bridge Columns
PFI:AIR - TT:用于多种危险的弹性桥柱的混合金属/玻璃复合系统
- 批准号:
1500293 - 财政年份:2015
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
Research Initiation Grants: Nurturing the Creativity of Students with ADHD in Engineering Disciplines
研究启动资助:培养工程学科中多动症学生的创造力
- 批准号:
1441826 - 财政年份:2014
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
相似海外基金
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
MCA: Leveraging Artificial Intelligence to Improve Understanding of Biogenic Volatile Organic Compound Emissions and Chemistry over Heterogeneous Forest Landscapes
MCA:利用人工智能提高对异质森林景观中生物挥发性有机化合物排放和化学的了解
- 批准号:
2322325 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Standard Grant
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
- 批准号:
10750074 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Leveraging genomics and artificial intelligence to develop predictive pesticide risk assessment frameworks for wild bees (Ref 4559)
利用基因组学和人工智能开发野生蜜蜂的预测性农药风险评估框架(参考文献 4559)
- 批准号:
2866086 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Studentship
Leveraging social determinants via artificial intelligence and peer coaching to address racial disparities in primary care among people who use opioids
通过人工智能和同伴辅导利用社会决定因素来解决阿片类药物使用者初级保健中的种族差异
- 批准号:
10829058 - 财政年份:2023
- 资助金额:
$ 45.92万 - 项目类别:
Leveraging artificial intelligence to develop novel tools for studying infant brain development
利用人工智能开发研究婴儿大脑发育的新工具
- 批准号:
10554951 - 财政年份:2022
- 资助金额:
$ 45.92万 - 项目类别:
Leveraging artificial intelligence and social innovation to reduce disparities in COVID-19 testing among African Americans
利用人工智能和社会创新减少非裔美国人之间的 COVID-19 检测差异
- 批准号:
10845418 - 财政年份:2022
- 资助金额:
$ 45.92万 - 项目类别:
Leveraging artificial intelligence and social innovation to reduce disparities in COVID-19 testing among African Americans
利用人工智能和社会创新减少非裔美国人之间的 COVID-19 检测差异
- 批准号:
10616349 - 财政年份:2022
- 资助金额:
$ 45.92万 - 项目类别:
Improving public access to health information and services by leveraging Artificial Intelligence, engagement and multidisciplinary approaches.
利用人工智能、参与和多学科方法,改善公众获取健康信息和服务的机会。
- 批准号:
460966 - 财政年份:2022
- 资助金额:
$ 45.92万 - 项目类别:
Miscellaneous Programs