CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
基本信息
- 批准号:2121215
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the explosive growth of ML/AI technologies, there is enormous potential to advance networking technologies to enable distributed ML/AI data analytics over networked systems. This project will explore innovative cross-disciplinary research at the intersections of wireless networking and machine learning, and study wireless federated learning (FL) for achieving collaborative intelligence in wireless networks. It will advance the fundamental understanding of quality-aware dynamic distributed computation and computation-communication co-design for wireless FL. This project will spur a new line of thinking and provide new insights to support various emerging ML/AI applications over wireless networked systems, such as collaborative robotics, multi-user mixed reality, and intelligent control and management of wireless networks. The proposed research will also be integrated with education activities at the PIs' institutions for graduate, undergraduate, and K-12 students via curriculum development, research experiences, and outreach. The PIs will make conscientious effort to recruit minority graduate students.This project will study quality-aware distributed computation for wireless FL, with focuses on channel-aware user selection, communication scheduling, and adaptive mini-batch size design. The proposed research is built on the key observation that the learning accuracy of the trained model in FL depends heavily on dynamic selection of users participating in the learning process and the quality of their local model updates (which is determined by their mini-batch sizes). The quality of local updates can be treated as a design parameter and used as a knob for adaptive control across users and over time based on users' communication and computation costs as well as capabilities. With this insight, the PIs will 1) quantify the impacts of the variances of users' local stochastic gradient updates on learning accuracy over the learning process, for general settings including non-IID data, non-convex loss functions, and asynchronous distributed learning; 2) develop adaptive algorithms that select the participating users and set their mini-batch sizes in each round of the FL algorithm, based on users' channel conditions and the impacts of their local updates on the training loss; 3) jointly design users' mini-batch sizes and schedule their communications to reduce the learning time, by investigating the intricate coupling between computation workloads and communication scheduling. Multi-objective optimization will be used to strike the right balance between learning accuracy and learning cost (or learning time).This project is jointly funded by the Division of Electrical, Communications and Cyber Systems (ECCS), and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着ML/AI技术的爆炸式增长,推进网络技术以实现网络系统上的分布式ML/AI数据分析具有巨大的潜力。该项目将在无线网络和机器学习的交叉点探索创新的跨学科研究,并研究无线联邦学习(FL),以实现无线网络中的协作智能。它将推进对无线FL的质量感知动态分布式计算和计算通信协同设计的基本理解。该项目将激发新的思维,并提供新的见解,以支持无线网络系统上各种新兴的ML/AI应用,如协作机器人,多用户混合现实以及无线网络的智能控制和管理。拟议的研究还将通过课程开发,研究经验和推广活动,与PI机构的研究生,本科生和K-12学生的教育活动相结合。本项目将研究无线FL的质量感知分布式计算,重点研究信道感知用户选择、通信调度和自适应小批量设计。拟议的研究是建立在一个关键的观察基础上的,即FL中训练模型的学习精度在很大程度上取决于参与学习过程的用户的动态选择及其本地模型更新的质量(由其小批量大小决定)。本地更新的质量可以被视为设计参数,并用作基于用户的通信和计算成本以及能力的跨用户和随时间的自适应控制的旋钮。有了这种洞察力,PI将1)量化用户的局部随机梯度更新的方差对学习过程中的学习精度的影响,对于包括非IID数据、非凸损失函数和异步分布式学习的一般设置; 2)开发自适应算法,该自适应算法在FL算法的每一轮中选择参与用户并设置其小批量大小,基于用户的信道条件和他们的本地更新对训练损失的影响; 3)通过研究计算工作量和通信调度之间的复杂耦合,联合设计用户的小批量大小和调度他们的通信以减少学习时间。多目标优化将用于在学习精度和学习成本之间取得适当的平衡(或学习时间)。本项目由电气、通信和网络系统司(ECCS)联合资助,激励竞争研究计划(EPSCoR)该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quality-Aware Distributed Computation for Cost-Effective Non-Convex and Asynchronous Wireless Federated Learning
- DOI:10.23919/wiopt52861.2021.9589660
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Yuxi Zhao;Xiaowen Gong
- 通讯作者:Yuxi Zhao;Xiaowen Gong
Quality-Aware Distributed Computation and Communication Scheduling for Fast Convergent Wireless Federated Learning
- DOI:10.23919/wiopt52861.2021.9589802
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Dongsheng Li;Yuxi Zhao;Xiaowen Gong
- 通讯作者:Dongsheng Li;Yuxi Zhao;Xiaowen Gong
Truthful Incentive Mechanism for Federated Learning with Crowdsourced Data Labeling
- DOI:10.1109/infocom53939.2023.10228923
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Yuxi Zhao;Xiaowen Gong;S. Mao
- 通讯作者:Yuxi Zhao;Xiaowen Gong;S. Mao
Distributed Policy Gradient with Heterogeneous Computations for Federated Reinforcement Learning
- DOI:10.1109/ciss56502.2023.10089771
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Ye Zhu;Xiaowen Gong
- 通讯作者:Ye Zhu;Xiaowen Gong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaowen Gong其他文献
Risk factors of delayed gastric emptying after distal pancreatectomy: A comprehensive systematic review and meta-analysis
胰体尾切除术后胃排空延迟的危险因素:综合系统评价和荟萃分析
- DOI:
10.1016/j.pan.2025.05.009 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:2.700
- 作者:
Chengshuai Pang;Rui Cao;Xiaowen Gong;Chenyang Dong;Yuerong Xuan;Chaojie Liang - 通讯作者:
Chaojie Liang
Incentivizing Quality-based Data Crowdsourcing
激励基于质量的数据众包
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Xiaowen Gong - 通讯作者:
Xiaowen Gong
Short Stature in Patients with Diamond-Blackfan Anemia: A Cross-Sectional Study
- DOI:
DOI: 10.1016/j.jpeds.2021.09.015 Full text links Cite - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Yang Wan;Xiaowen Gong;Siqi Cheng;Zixi Yin;Yangyang Gao;Jun Li;Suyu Zong;Yingchi Zhang;Yumei Chen;Rongxiu Zheng;Xiaofan Zhu - 通讯作者:
Xiaofan Zhu
Wireless Network Design and Optimization: From Social Awareness to Security
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xiaowen Gong - 通讯作者:
Xiaowen Gong
Measurable residual disease (MRD)-testing in haematological cancers: A giant leap forward or sideways?
血液系统癌症中的可测量残留病(MRD)检测:是向前的巨大飞跃还是向侧面的移动?
- DOI:
10.1016/j.blre.2024.101226 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:5.700
- 作者:
Qiujin Shen;Xiaowen Gong;Yahui Feng;Yu Hu;Tiantian Wang;Wen Yan;Wei Zhang;Saibing Qi;Robert Peter Gale;Junren Chen - 通讯作者:
Junren Chen
Xiaowen Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaowen Gong', 18)}}的其他基金
RET Site: Project-Based Learning for Rural Alabama STEM Middle School Teachers in Machine Learning and Robotics
RET 网站:阿拉巴马州农村 STEM 中学教师机器学习和机器人技术的项目式学习
- 批准号:
2206977 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CAREER: Towards Efficient and Fast Hierarchical Federated Learning in Heterogeneous Wireless Edge Networks
职业:在异构无线边缘网络中实现高效快速的分层联邦学习
- 批准号:
2145031 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332172 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245607 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319781 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242700 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245608 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242701 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Quickest Threat Detection in Adversarial Sensor Networks
CCSS:协作研究:对抗性传感器网络中最快的威胁检测
- 批准号:
2236565 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Standard Grant