CAREER: Towards Efficient and Fast Hierarchical Federated Learning in Heterogeneous Wireless Edge Networks

职业:在异构无线边缘网络中实现高效快速的分层联邦学习

基本信息

  • 批准号:
    2145031
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

The accelerating penetration of machine learning (ML) based artificial intelligence (AI) in a variety of domains and the explosive growth of wireless applications spur wireless federated learning (WFL), which can achieve collaborative intelligence via federated learning (FL) in wireless edge networks. This project explores wireless hierarchical federated learning (WHFL), which leverages a hierarchical communication structure to substantially reduce the communication costs of WFL. It develops fundamental understandings as well as adaptive and efficient algorithms and schemes for WHFL while addressing several unique challenges that have been predominantly unexplored before: 1) inflexibility of homogeneous computation configurations (including local iteration number, mini-batch size, step size) for participating devices; 2) inefficiency of bandwidth-sharing based communication resource allocation; 3) complex impacts of the hierarchical communication structure for heterogeneous devices. The project explores innovative cross-disciplinary research of wireless networking and machine learning, and aims to provide useful insights of networking research for future intelligent networked computational systems based on data analytics. The research outcomes of this project have the potential to enable intelligent control and management of wireless networks, and also support various emerging AI applications over wireless networked systems, such as connected and autonomous vehicles, and collaborative robots. Various substantial education programs are integrated with the proposed research, including hands-on wireless and ML/AI projects for college students, and outreach activities on robotics for K-12 students.This project studies hierarchical FL in wireless edge networks for devices with heterogeneous computation and communication capabilities. The proposed research is motivated by some key insights obtained from our preliminary work: 1) heterogeneous computation configurations, particularly heterogeneous local iteration numbers, have non-trivial impacts on the learning accuracy and learning cost of FL; 2) time-sharing based communication resource allocation is more efficient than bandwidth-sharing, while it results in non-trivial coupling between computation configuration and communication scheduling; 3) the hierarchical model communication and aggregation have non-trivial impacts when devices have heterogeneous computation configurations. With these insights, the proposed research is organized into the following three interdependent thrusts: i) adaptive cost-aware device selection and computation configuration in a local cluster; ii) co-design of computation configuration and communication scheduling for fast convergence in a local cluster; iii) global model communication and aggregation for accurate learning across local clusters. The proposed schemes and algorithms for WHFL will be implemented to evaluate their practical performance. This project is jointly funded by CNS and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于机器学习(ML)的人工智能(AI)在各个领域的加速渗透以及无线应用的爆炸式增长刺激了无线联邦学习(WFL),它可以通过无线边缘网络中的联邦学习(FL)实现协作智能。本项目探索无线分层联邦学习(WHFL),它利用分层通信结构大幅降低WFL的通信成本。它为WHFL开发了基本的理解以及自适应和高效的算法和方案,同时解决了以前主要未探索的几个独特挑战:1)参与设备的同构计算配置(包括局部迭代次数,小批量大小,步长)的不灵活性;2)基于带宽共享的通信资源分配效率低下;3)层次通信结构对异构设备的复杂影响。该项目探索无线网络和机器学习的创新跨学科研究,旨在为基于数据分析的未来智能网络计算系统的网络研究提供有用的见解。该项目的研究成果有可能实现无线网络的智能控制和管理,并支持无线网络系统上的各种新兴人工智能应用,例如联网和自动驾驶汽车以及协作机器人。各种实质性的教育项目与拟议的研究相结合,包括面向大学生的动手无线和ML/AI项目,以及面向K-12学生的机器人拓展活动。本项目研究具有异构计算和通信能力的设备在无线边缘网络中的分层FL。本文提出的研究是基于我们从前期工作中获得的一些关键见解:1)异构计算配置,特别是异构局部迭代数,对FL的学习精度和学习成本有不小的影响;2)基于分时的通信资源分配比基于带宽共享的通信资源分配效率更高,但会导致计算配置与通信调度之间的非平凡耦合;3)当设备具有异构计算配置时,层次模型的通信和聚合具有重要的影响。有了这些见解,提出的研究分为以下三个相互依存的重点:i)自适应成本感知设备选择和本地集群的计算配置;Ii)协同设计计算配置和通信调度,实现局部集群的快速收敛;Iii)全局模型通信和聚合,以实现跨局部集群的准确学习。本文将对所提出的WHFL方案和算法进行实施,以评估其实际性能。该项目由CNS和促进竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anarchic Convex Federated Learning
Anarchic Federated learning with Delayed Gradient Averaging
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaowen Gong其他文献

Risk factors of delayed gastric emptying after distal pancreatectomy: A comprehensive systematic review and meta-analysis
胰体尾切除术后胃排空延迟的危险因素:综合系统评价和荟萃分析
  • DOI:
    10.1016/j.pan.2025.05.009
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Chengshuai Pang;Rui Cao;Xiaowen Gong;Chenyang Dong;Yuerong Xuan;Chaojie Liang
  • 通讯作者:
    Chaojie Liang
Incentivizing Quality-based Data Crowdsourcing
激励基于质量的数据众包
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaowen Gong
  • 通讯作者:
    Xiaowen Gong
Short Stature in Patients with Diamond-Blackfan Anemia: A Cross-Sectional Study
  • DOI:
    DOI: 10.1016/j.jpeds.2021.09.015 Full text links Cite
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Yang Wan;Xiaowen Gong;Siqi Cheng;Zixi Yin;Yangyang Gao;Jun Li;Suyu Zong;Yingchi Zhang;Yumei Chen;Rongxiu Zheng;Xiaofan Zhu
  • 通讯作者:
    Xiaofan Zhu
Wireless Network Design and Optimization: From Social Awareness to Security
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaowen Gong
  • 通讯作者:
    Xiaowen Gong
Measurable residual disease (MRD)-testing in haematological cancers: A giant leap forward or sideways?
血液系统癌症中的可测量残留病(MRD)检测:是向前的巨大飞跃还是向侧面的移动?
  • DOI:
    10.1016/j.blre.2024.101226
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Qiujin Shen;Xiaowen Gong;Yahui Feng;Yu Hu;Tiantian Wang;Wen Yan;Wei Zhang;Saibing Qi;Robert Peter Gale;Junren Chen
  • 通讯作者:
    Junren Chen

Xiaowen Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaowen Gong', 18)}}的其他基金

RET Site: Project-Based Learning for Rural Alabama STEM Middle School Teachers in Machine Learning and Robotics
RET 网站:阿拉巴马州农村 STEM 中学教师机器学习和机器人技术的项目式学习
  • 批准号:
    2206977
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Quality-Aware Distributed Computation for Wireless Federated Learning: Channel-Aware User Selection, Mini-Batch Size Adaptation, and Scheduling
CCSS:协作研究:无线联邦学习的质量感知分布式计算:通道感知用户选择、小批量大小自适应和调度
  • 批准号:
    2121215
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
  • 批准号:
    2340722
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards 3D Omnidirectional and Efficient Wireless Power Transfer with Controlled 2D Near-Field Coil Array
职业:利用受控 2D 近场线圈阵列实现 3D 全向高效无线功率传输
  • 批准号:
    2338697
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient In-storage Indexing
职业:实现高效的存储内索引
  • 批准号:
    2338457
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient Cryptography for Next Generation Applications
职业:面向下一代应用的高效密码学
  • 批准号:
    2402031
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
  • 批准号:
    2401481
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
  • 批准号:
    2144625
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Elastic Security with Safe and Efficient Network Security Function Virtualization
职业:通过安全高效的网络安全功能虚拟化迈向弹性安全
  • 批准号:
    2129164
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient Accelerated Cloud Data Centers
职业:迈向高效加速云数据中心
  • 批准号:
    2047521
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Principled Framework for Resilient, Data Efficient and Scalable Reinforcement Learning for Control
职业:建立一个有弹性、数据高效且可扩展的强化学习控制原则框架
  • 批准号:
    2045783
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了