Grounding computational models of vision with infant brain data

用婴儿大脑数据建立视觉计算模型

基本信息

  • 批准号:
    2122961
  • 负责人:
  • 金额:
    $ 57.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

How do children learn to recognize visual objects? They soon learn to recognize a cat or a cup or the faces of their family very quickly, often with no apparent effort. Human vision is one of the most complex systems in our body. Almost half of our brains are devoted to the visual system. Neuroscientists have a deep interest in understanding visual perception as an important sensory window to the world and as a key domain of human intelligence. Computer scientists are also interested in understanding human vision to gain insights that may help develop better computer vision systems. Artificial neural networks (ANNs) - a form of artificial intelligence - can be trained to recognize visual objects as well. Thus, while understanding human vision may have implications for computer vision, the converse is also possible and hence ANNs have been proposed as a model to understand human vision. However, ANN models do not yet fully match or explain human vision. For example, ANN models are trained in fundamentally different ways from how humans learn from infancy and beyond. One way to train a computer to recognize visual objects, such as cats, is to give it millions of images of cats that have been labeled. However, children can learn to recognize cats after only a few short encounters. Thus, to better model human vision, we need to know how vision develops in human infants. The goal of the research in this project will be to study how the infant brain represents visual objects. Data and tools developed as part of the project will be shared with other scientists to stimulate further research in this field. The project will also involve undergraduate and graduate students as well as outreach to K-12 students, STEM teachers, and local families.This project aims to jointly inform artificial models of human vision, enhance computer vision and advance our understanding of the infant brain. Researchers will use the safe and non-invasive technique of EEG (electro-encephalography) to measure brain activity in infants (12-15 months old). The first aim of the research will be to compare how infants and ANNs represent visual objects. The EEG data will be analyzed using multivariate pattern analysis (MVPA) and representational similarity analysis (RSA) in relation to predictions from different artificial neural network (ANN) models. A second aim will be to explore how infants represent visual objects in the context of partly hidden objects. A related aim is to discover how spoken words, and linguistic representation, can influence object recognition. Infants will be presented with whole or partially occluded images of objects, after hearing a congruent spoken cue or an incongruent cue. Congruent words are predicted to enhance visual processing for partial images, an indication of recurrent or top-down processing. This will test the hypothesis that top-down factors shape how the infant brain represents visual objects. Findings from this research may ultimately contribute to the design of more human-like artificial intelligence in the domain of visual perception. The studies in this project will also build bridges between computational and developmental neuroscience and machine learning and computer vision. For developmental researchers, the proposed methods (MVPA) provide a new and promising tool for the analysis of infant EEG data and results will offer a fresh angle for understanding infants’ visual processing. For researchers in computational neuroscience, results from the project offer an exciting opportunity to align a wide-spread goal, developing neural networks that learn like the human brain learns, to actual data from the learning infant brain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
儿童如何学习识别视觉对象?他们很快就学会了识别一只猫或一个杯子或他们的家人的面孔非常快,往往没有明显的努力。人类视觉是我们身体中最复杂的系统之一。我们的大脑几乎有一半是用于视觉系统的。神经科学家对理解视知觉有着浓厚的兴趣,视知觉是世界的一个重要感官窗口,也是人类智能的一个关键领域。计算机科学家也对理解人类视觉感兴趣,以获得可能有助于开发更好的计算机视觉系统的见解。人工神经网络(ANN)--人工智能的一种形式--也可以经过训练来识别视觉对象。因此,虽然理解人类视觉可能对计算机视觉有影响,但匡威也是可能的,因此人工神经网络已被提出作为理解人类视觉的模型。然而,人工神经网络模型还不能完全匹配或解释人类视觉。例如,人工神经网络模型的训练方式与人类从婴儿期及以后的学习方式完全不同。训练计算机识别视觉对象(如猫)的一种方法是给它数百万张被标记的猫的图像。然而,孩子们可以在几次短暂的接触后学会识别猫。因此,为了更好地模拟人类视觉,我们需要知道人类婴儿的视觉是如何发展的。该项目的研究目标是研究婴儿大脑如何表征视觉对象。作为该项目的一部分开发的数据和工具将与其他科学家分享,以促进这一领域的进一步研究。该项目还将涉及本科生和研究生,以及K-12学生,STEM教师和当地家庭。该项目旨在共同为人类视觉的人工模型提供信息,增强计算机视觉并促进我们对婴儿大脑的理解。研究人员将使用安全和非侵入性的EEG(脑电图)技术来测量婴儿(12-15个月大)的大脑活动。这项研究的第一个目的是比较婴儿和人工神经网络如何代表视觉对象。将使用与不同人工神经网络(ANN)模型预测相关的多变量模式分析(MVPA)和代表性相似性分析(RSA)分析EEG数据。第二个目标是探索婴儿如何在部分隐藏对象的背景下表示视觉对象。一个相关的目的是发现口语和语言表征如何影响物体识别。在听到一致的口头提示或不一致的提示后,婴儿将被呈现物体的全部或部分被遮挡的图像。预测一致的话,以提高局部图像的视觉处理,复发或自上而下的处理的指示。这将检验自上而下的因素塑造婴儿大脑如何表征视觉对象的假设。这项研究的结果可能最终有助于在视觉感知领域设计更像人类的人工智能。该项目的研究还将在计算和发展神经科学与机器学习和计算机视觉之间建立桥梁。对于发展研究者来说,所提出的方法(MVPA)为婴儿EEG数据的分析提供了一个新的和有前途的工具,其结果将为理解婴儿的视觉加工提供一个新的角度。对于计算神经科学的研究人员来说,该项目的成果提供了一个令人兴奋的机会,可以将一个广泛的目标,即开发像人类大脑学习一样学习的神经网络,与学习中的婴儿大脑的实际数据相结合。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurie Bayet其他文献

Laurie Bayet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 57.74万
  • 项目类别:
Computational Multi-Models Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings (M2DESCO)
计算多模型支持安全设计
  • 批准号:
    10110861
  • 财政年份:
    2024
  • 资助金额:
    $ 57.74万
  • 项目类别:
    EU-Funded
CRII: AF: RUI: Algorithmic Fairness for Computational Social Choice Models
CRII:AF:RUI:计算社会选择模型的算法公平性
  • 批准号:
    2348275
  • 财政年份:
    2024
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
Computational Modeling Core
计算建模核心
  • 批准号:
    10551707
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
Data Science and Statistics Core
数据科学和统计核心
  • 批准号:
    10549489
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Studentship
Conference: SICB 2024: Computational and Physical Models in Research and Teaching to Explore Form-Function Relationships
会议:SICB 2024:研究和教学中的计算和物理模型探索形式-功能关系
  • 批准号:
    2326876
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Standard Grant
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了