Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership

合作研究:HDR DSC:数据科学培训和实践:通过学术和工业合作培养多元化的劳动力

基本信息

  • 批准号:
    2123380
  • 负责人:
  • 金额:
    $ 60.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

A significant number of modern scientific studies rely upon processing and analyzing a large amount of data for information extraction, scientific discovery, and decision making. This motivates the need for training a new generation of data scientists with interdisciplinary skills and a deep understanding of appropriate and applicable data analysis methods, as well as the ability to communicate the outcomes of the scientific inquiry. Historically, a considerable number of students graduating from traditional programs in statistics, mathematics, and computer science are not prepared to handle the emerging challenges of data-intensive problems. To address this issue, this project aims to develop a cross-disciplinary curricular, research, and career preparation program in data science. Moreover, it will create a paradigm for taking data science training from academia into real-world applications through close partnership with industry, government, and non-profit organizations. This project will have a broad societal impact by creating a diverse community of learners, equipped with the required skills to join the workforce. Through engaging students selected from a pool of highly diverse populations in STEM areas, this project, California Data Experience Transformation (CADET), will facilitate data science training via curriculum development, hands-on experiences, and close interactions with both academic and non-academic organizations. The CADET project gives rise to the creation of an integrative, dialectical, and interactive ecosystem between the University of California at Irvine, California State University at Fullerton, and Cypress College. These institutions represent the three tiers of higher learning in California, namely, University of California, spearheading research and discovery; California State University, combining research and pedagogy; and Community College, offering two-year preparatory programs. The primary components of the CADET project include generating data science opportunities for underrepresented STEM majors, developing and implementing modern data science curricula at the three participating institutes and disseminating them to other institutions, and finally creating a gateway to diverse career opportunities through mentoring and direct involvement in real-world projects. More than 120 CADET scholars will participate in a host of activities including a summer bootcamp, team science training, weekly seminars, and a collaborative research project, all of which will lead to presentations at symposiums and conferences. Ultimately, through implementing new curricula and student and faculty training, the CADET project will establish a data science culture across STEM disciplines that extends beyond the lifetime of this award.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大量的现代科学研究依赖于处理和分析大量的数据来进行信息提取、科学发现和决策。这就需要培养新一代的数据科学家,他们具有跨学科的技能,对适当和适用的数据分析方法有深刻的理解,并有能力传达科学研究的结果。从历史上看,相当多的学生从传统的统计学,数学和计算机科学专业毕业,没有准备好处理数据密集型问题的新兴挑战。为了解决这个问题,该项目旨在开发数据科学的跨学科课程,研究和职业准备计划。此外,它还将通过与行业、政府和非营利组织的密切合作,为将学术界的数据科学培训引入现实世界的应用创造一个范例。该项目将产生广泛的社会影响,创造一个多元化的学习者社区,配备必要的技能,加入劳动力队伍。通过吸引从STEM领域高度多样化的人群中选出的学生,这个项目,加州数据体验转型(CADET),将通过课程开发,实践经验以及与学术和非学术组织的密切互动来促进数据科学培训。CADET项目在加州尔湾大学、加州富勒顿州立大学和柏树学院之间建立了一个综合、辩证和互动的生态系统。这些机构代表了加州高等教育的三个层次,即加州大学,带头研究和发现;加州州立大学,结合研究和教学法;社区学院,提供两年的预科课程。CADET项目的主要组成部分包括为代表性不足的STEM专业创造数据科学机会,在三个参与机构开发和实施现代数据科学课程,并将其传播到其他机构,最后通过指导和直接参与现实世界的项目,为多样化的职业机会创造一个门户。120多名CADET学者将参加一系列活动,包括夏令营,团队科学培训,每周研讨会和合作研究项目,所有这些都将导致在研讨会和会议上的演讲。最终,CADET项目将通过实施新的课程和师生培训,在STEM学科中建立一种数据科学文化,这种文化将延续到该奖项的生命周期之外。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orthogonal array composite designs for drug combination experiments with applications for tuberculosis
  • DOI:
    10.1002/sim.9423
  • 发表时间:
    2022-05-06
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Luna,Jose;Jaynes,Jessica;Wong,Weng Kee
  • 通讯作者:
    Wong,Weng Kee
An Urgent Plea for More Graduate Programs in Statistics Education
迫切呼吁开设更多统计教育研究生课程
  • DOI:
    10.5642/jhummath.202201.32
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Drew, David;Behseta, Sam;Ichinose, Cherie
  • 通讯作者:
    Ichinose, Cherie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam Behseta其他文献

Sam Behseta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
  • 批准号:
    2321574
  • 财政年份:
    2023
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
  • 批准号:
    2242944
  • 财政年份:
    2022
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123237
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123259
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
  • 批准号:
    2123486
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
  • 批准号:
    2123260
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
  • 批准号:
    2123447
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
  • 批准号:
    2219975
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Building Capacity in Data Science through Biodiversity, Conservation, and General Education
合作研究:HDR DSC:通过生物多样性、保护和通识教育建设数据科学能力
  • 批准号:
    2122991
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
Collaborative Research: HDR DSC: Infusion of Data Science and Computation into Engineering Curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
  • 批准号:
    2123244
  • 财政年份:
    2021
  • 资助金额:
    $ 60.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了