MCA: Enhancing Discrete Fracture Network Modeling Using Evolutionary and Quantum Computing to Expand Opportunities of Convergence Research

MCA:利用进化和量子计算增强离散断裂网络建模,扩大融合研究的机会

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Efficient and accurate numerical modeling of flow and transport processes in fractured rocks is necessary in a wide array of fields. One common numerical method to simulate groundwater flow and contaminant transport in fractured rocks is the discrete fracture network (DFN) modeling approach. The project enhances the computational performance and functionality of DFN models by integrating them with techniques from the field of evolutionary and quantum computing. This will lead to more robust tools for ensuring safe and sustainable use of fractured rock systems, and will enable scientific advances at the convergence of subsurface hydrology, quantum computing, and artificial-intelligence-inspired methods. The project also contributes to a course on computational methods in fracture networks and provides training to a graduate student. The research approach focuses on: 1) graph representations of fracture networks and determination of reduced-order models to include diffusional exchanges with the surrounding impermeable rock matrix, 2) customization of evolutionary computing optimization (ECO) encoding schemes and fitness evaluation computations to further reduce complexity of networks, and 3) use of quantum computing algorithms for large linear systems to obtain flow solutions across a multitude of scales in fracture networks. Existing DFN models will be enhanced by adding heat transport capabilities to create DFN-Thermal models. Identification of backbone in DFNs, which is traditionally done through extensive particle-based simulations or machine learning methods, will be approached in this project as a multi-objective optimization problem where ECO algorithms will simultaneously optimize a “population” of backbones rather than a single backbone, and along with effective operators (selection, crossover, mutation) would determine the optimal solution. By providing improved simulation platform and evaluation framework to assess controls on flow and transport processes in fracture networks, the project will serve to expand the application of DFN models to problems of higher degrees of complexity and at larger scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由《2021年美国救援计划法案》(公法117-2)资助。在许多领域,对裂隙岩体的流动和输运过程进行高效、准确的数值模拟是必要的。离散裂隙网络(DFN)建模方法是模拟裂隙岩石中地下水流动和污染物运移的一种常用数值方法。该项目通过将DFN模型与进化和量子计算领域的技术相结合,增强了DFN模型的计算性能和功能。这将带来更强大的工具,以确保裂缝岩石系统的安全和可持续利用,并将在地下水文学、量子计算和人工智能启发方法的融合方面实现科学进步。该项目还为裂缝网络计算方法课程做出了贡献,并为研究生提供了培训。研究方法主要集中在:1)裂缝网络的图表示和降阶模型的确定,以包括与周围不透水岩石矩阵的扩散交换;2)定制进化计算优化(ECO)编码方案和适应度评估计算,以进一步降低网络的复杂性;3)在大型线性系统中使用量子计算算法,以获得裂缝网络中多个尺度的流动解。现有DFN模型将通过增加热传输功能来增强DFN- thermal模型。传统上通过广泛的基于粒子的模拟或机器学习方法来识别DFNs中的主干,在这个项目中将作为一个多目标优化问题来处理,其中ECO算法将同时优化主干的“种群”而不是单个主干,并与有效的算子(选择、交叉、突变)一起确定最佳解决方案。通过提供改进的模拟平台和评估框架来评估裂缝网络中流动和输送过程的控制,该项目将有助于扩大DFN模型在更高复杂程度和更大范围内的应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rishi Parashar其他文献

Erratum: Properties of a pair of fracture networks produced by triaxial deformation experiments: insights on fluid flow using discrete fracture network models
  • DOI:
    10.1007/s10040-017-1551-y
  • 发表时间:
    2017-02-22
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Ghislain Trullenque;Rishi Parashar;Clément Delcourt;Lucille Collet;Pauline Villard;Sébastien Potel
  • 通讯作者:
    Sébastien Potel
DeepTrackStat: An end-to-end deep learning framework for extraction of motion statistics from videos of particles
DeepTrackStat:一种用于从粒子视频中提取运动统计信息的端到端深度学习框架
STAMNet—A spatiotemporal attention module and network for upscaling reactive transport simulations of the hyporheic zone
STAMNet—用于提升河漫滩反应性输运模拟的时空注意力模块和网络
  • DOI:
    10.1016/j.advwatres.2025.104951
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Marc Berghouse;Rishi Parashar
  • 通讯作者:
    Rishi Parashar

Rishi Parashar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
  • 批准号:
    2401619
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
RAPID: Enhancing WUI Fire Assessment through Comprehensive Data and High-Fidelity Simulation
RAPID:通过综合数据和高保真模拟增强 WUI 火灾评估
  • 批准号:
    2401876
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
  • 批准号:
    2332082
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
  • 批准号:
    2346718
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Partnerships for Enhancing ERI Research (PEER)
加强 ERI 研究的伙伴关系 (PEER)
  • 批准号:
    2347159
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
REU Site: Enhancing Undergraduate Experiences in Data and Mobile Cloud Security
REU 网站:增强本科生在数据和移动云安全方面的经验
  • 批准号:
    2349233
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了