Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
基本信息
- 批准号:2123503
- 负责人:
- 金额:$ 18.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diverse experts from five universities in, or with a presence in, the Chicago area are collaborating as the Metropolitan Chicago Data-science Corps to 1) help local non-profit organizations take advantage of increasing data volume and data complexity, 2) train data science students in how to effectively apply their academic knowledge to real data challenges in the non-profit sector, 3) exchange data science curriculum and expertise among these universities and with local community colleges. An organization can submit a Request for Data Services (RDS) and receive help to develop it. MCDC particularly welcomes RDS in areas related to environment, health, and our social well-being. Each RDS is assigned to a team of students. Teams of students with a foundation in data science are formed within a practicum course or as part of a summer internship. MCDC will develop the practicum course, where each team has one or more expert mentors and forms a partnership with the requesting organization. At the end of the term, each team will deliver a solution to each of the requesting organizations.MCDC is an interdisciplinary partnership between universities, myriad community organizations, and two expansion colleges and aims to strengthen the national data science workforce by integrating community needs with academic learning. By supporting infrastructure to unite diverse students and faculty across institutions and disciplines, by prioritizing the engagement of community, and embedding real-world team-based data science projects into the curriculum, the MCDC will be a uniquely powerful educational experience which will support societal progress. To realize this goal, existing curricula are grouped into multiple pathways to prepare a diverse range of students for participation in MCDC. MCDC students acquire both data acumen and societal knowledge that is intended to lead to a well-prepared and engaged workforce. The MCDC project directors combine extensive, proven, funded, and diverse expertise in curriculum development, inclusive learning practices, integrating real-world data into courses, learning systems, data science, as well as in health, social, and environmental sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自芝加哥地区或在该地区有业务的五所大学的不同专家正在合作成立大都会芝加哥数据科学团,以1)帮助当地非营利组织利用不断增加的数据量和数据复杂性,2)培训数据科学专业的学生如何有效地将其学术知识应用于非营利部门的真实的数据挑战,3)在这些大学之间以及与当地社区学院交换数据科学课程和专业知识。组织可以提交数据服务请求(RDS)并获得帮助以开发它。MCDC特别欢迎与环境,健康和我们的社会福祉相关的RDS。每个RDS分配给一组学生。具有数据科学基础的学生团队在实习课程中形成,或作为暑期实习的一部分。MCDC将开发实习课程,每个团队都有一名或多名专家导师,并与请求组织建立合作伙伴关系。MCDC是大学、众多社区组织和两所扩展学院之间的跨学科合作伙伴关系,旨在通过将社区需求与学术学习相结合,加强国家数据科学人才队伍。通过支持基础设施来团结不同机构和学科的学生和教师,通过优先考虑社区的参与,并将现实世界中基于团队的数据科学项目嵌入到课程中,MCDC将成为一个独特的强大的教育体验,将支持社会进步。为了实现这一目标,现有的课程分为多种途径,以准备各种各样的学生参与MCDC。MCDC学生获得数据敏锐性和社会知识,旨在培养一支准备充分和敬业的劳动力队伍。MCDC项目负责人联合收割机在课程开发、包容性学习实践、将真实世界数据整合到课程、学习系统、数据科学以及健康、社会和环境科学方面结合了广泛、经过验证、有资金支持和多样化的专业知识。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eunice Santos其他文献
AFRL-AFOSR-VA-TR-2016-0258 Incorporating Resilience into Dynamic Social Models
AFRL-AFOSR-VA-TR-2016-0258 将复原力纳入动态社会模型
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Eunice Santos - 通讯作者:
Eunice Santos
ANALYZING INFORMAL ENTREPRENEURSHIP: A BIBLIOMETRIC SURVEY
分析非正规创业:文献调查
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Eunice Santos;J. Ferreira - 通讯作者:
J. Ferreira
What Is the Impact of Informal Entrepreneurship on Venture Capital Flows?
非正规创业对风险资本流动有何影响?
- DOI:
10.1007/s13132-020-00701-w - 发表时间:
2020 - 期刊:
- 影响因子:3.3
- 作者:
Eunice Santos;C. Fernandes;J. Ferreira;C. Lobo - 通讯作者:
C. Lobo
The Moderating Effects of Economic Development on Innovation and Shadow Entrepreneurship: Grey or Pink?
经济发展对创新和影子创业的调节作用:灰色还是粉色?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Eunice Santos;C. Fernandes;J. Ferreira - 通讯作者:
J. Ferreira
Two-stage lipid induction in the microalga emTetraselmis striata/em CTP4 upon exposure to different abiotic stresses
微藻 emTetraselmis striata/CTP4 在暴露于不同非生物胁迫下的两阶段脂质诱导
- DOI:
10.1016/j.renene.2023.03.103 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:9.100
- 作者:
Ivo Monteiro;Lisa M. Schüler;Eunice Santos;Hugo Pereira;Peter S.C. Schulze;Cláudia Florindo;João Varela;Luísa Barreira - 通讯作者:
Luísa Barreira
Eunice Santos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eunice Santos', 18)}}的其他基金
CAREER: Determining Parallel Complexity of Numerical Computation Problems via Dependency Graphs
职业:通过依赖图确定数值计算问题的并行复杂性
- 批准号:
0196377 - 财政年份:2000
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
CISE Research Instrumentation: Establishing a Laboratory for Research in Parallel Computing and Signal Processing
CISE 研究仪器:建立并行计算和信号处理研究实验室
- 批准号:
0196324 - 财政年份:2000
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
CISE Research Instrumentation: Establishing a Laboratory for Research in Parallel Computing and Signal Processing
CISE 研究仪器:建立并行计算和信号处理研究实验室
- 批准号:
9911085 - 财政年份:2000
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
CAREER: Determining Parallel Complexity of Numerical Computation Problems via Dependency Graphs
职业:通过依赖图确定数值计算问题的并行复杂性
- 批准号:
9624721 - 财政年份:1996
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
- 批准号:
2321574 - 财政年份:2023
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
- 批准号:
2242944 - 财政年份:2022
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
- 批准号:
2123237 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123259 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
- 批准号:
2123486 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123260 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
- 批准号:
2123447 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Continuing Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
2219975 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Building Capacity in Data Science through Biodiversity, Conservation, and General Education
合作研究:HDR DSC:通过生物多样性、保护和通识教育建设数据科学能力
- 批准号:
2122991 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Infusion of Data Science and Computation into Engineering Curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
- 批准号:
2123244 - 财政年份:2021
- 资助金额:
$ 18.5万 - 项目类别:
Standard Grant