Mapping Dissolved Oxygen using Observations and Machine Learning
使用观察和机器学习绘制溶解氧图
基本信息
- 批准号:2123546
- 负责人:
- 金额:$ 34.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Oxygen is produced by algae in the sunlit surface waters and is released into the atmosphere. This process contributes to about the half of atmospheric oxygen. However, there is a growing consensus in the scientific community that the global ocean oxygen inventory has declined in recent decades. Ocean heat uptake causes the reduction of solubility, and changes in circulation and biogeochemical processes associated with the ocean warming can further change ocean oxygen content. The reduction of dissolved oxygen can have far-reaching impacts on the marine habitats. Recent estimates of the global oxygen decline are in the range of 0.5-3.3% over the period of 1970- 2010. Distribution of the historical O2 measurements is irregular and sparse, causing significant uncertainty in these estimates. The objective of this project is to determine changes in the dissolved oxygen content of the oceans based on observational data and machine learning techniques. The overarching hypothesis of this project is that there are significant, regional relationships between O2 and other observed quantities. Dissolved oxygen is ultimately controlled by the combination of ocean circulation, air-sea gas transfer and biological processes. These processes can be linked with other observed quantities such as temperature (T) and salinity (S), but such relationships can be complex and non-linear. Therefore, it is difficult to determine a universal relationship that governs the distribution of O2 based on the first principle. However, machine learning algorithms can extract empirical relationships between O2 and other variables from existing observations, allowing us to estimate O2 where direct observation is not available. The work will also support one graduate and one undergraduate student research and outreach activities at local events.In this project, machine learning will be used to fill data gaps in the historical O2 dataset and to generate an improved, gridded estimates of O2 from 1960 to present. This approach takes advantage of the large amount of accumulated in-situ observations over multiple decades including not only O2 itself but also other related variables such as T and S. The proposed work revolves around three hypotheses. First, the current estimates of global O2 trend and variability are strongly influenced by relatively data-rich regions such as North Atlantic and North Pacific. Machine-learning based O2 dataset with an improved gap-fill approaches is hypothesized to better represent relatively data-poor regions such as tropics and southern hemisphere oceans. Secondly, the current estimates indicate that less than half of O2 decline is explained by the solubility effect. The global O2-heat relationship measures the reinforcing effects of ocean ventilation and biogeochemistry. Machine learning can estimate empirical relationships between O2, T and other physical variables, which can be manipulated to perform sensitivity experiments. The empirical model of O2 can constrain the regional and global O2-heat relationship. Thirdly, it is hypothesized that observed O2 decline in the tropical thermocline are driven by the combination of natural climate variability and long-term trends. In the proposed work, sensitivity experiments are performed with the empirical model of O2 to evaluate the influences of long-term trends and decadal-scale changes associated with the modes of natural climate variability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氧气是由藻类在阳光照射下的表面沃茨中产生的,并被释放到大气中。这个过程贡献了大约一半的大气氧气。然而,科学界越来越多的共识是,近几十年来,全球海洋氧气存量有所下降。海洋热量吸收导致溶解度降低,与海洋变暖相关的环流和生物地球化学过程的变化可以进一步改变海洋氧含量。溶解氧的减少会对海洋生境产生深远的影响。最近估计,1970年至2010年期间,全球氧气下降幅度在0.5%至3.3%之间。历史O2测量值的分布不规则且稀疏,导致这些估计值存在显著的不确定性。 该项目的目标是根据观测数据和机器学习技术确定海洋溶解氧含量的变化。 该项目的首要假设是,O2和其他观测量之间存在显著的区域关系。溶解氧最终受海洋环流、海气输送和生物过程的共同控制。这些过程可以与其他观测到的量,如温度(T)和盐度(S),但这种关系可能是复杂的和非线性的。因此,很难根据第一原理确定支配O2分布的普遍关系。然而,机器学习算法可以从现有的观测结果中提取O2和其他变量之间的经验关系,使我们能够在无法直接观测的情况下估计O2。这项工作还将支持一名研究生和一名本科生在当地活动中的研究和推广活动。在这个项目中,机器学习将用于填补历史O2数据集的数据空白,并生成从1960年至今的O2改进的网格估计。这种方法利用了几十年来积累的大量现场观测数据,不仅包括O2本身,还包括其他相关变量,如T和S。拟议的工作围绕三个假设。首先,目前对全球O2趋势和变化的估计受到北大西洋和北太平洋等数据相对丰富的地区的强烈影响。假设基于机器学习的O2数据集具有改进的间隙填充方法,以更好地代表相对数据贫乏的区域,如热带和南半球海洋。其次,目前的估计表明,不到一半的O2下降是由溶解度效应解释的。全球O2-热量关系测量了海洋通风和海洋地球化学的强化作用。机器学习可以估计O2、T和其他物理变量之间的经验关系,这些关系可以被操纵来执行敏感性实验。O2的经验模型可以约束区域和全球的O2-热量关系。第三,据推测,观察到的热带温跃层中的O2下降是由自然气候变率和长期趋势相结合。在拟议的工作中,敏感性实验进行的经验模式的O2,以评估长期趋势和十年尺度的变化与自然气候变率的模式的影响。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Takamitsu Ito其他文献
[Bacteriological Properties of Meropenem-resistant Escherichia coli Isolated from Seven Patients within a Month].
一个月内从七名患者身上分离出的耐美罗培南大肠埃希菌的细菌学特性[J].
- DOI:
10.11150/kansenshogakuzasshi.91.132 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Takamitsu Ito;Izumo Kanesaka;Satoe Kurachi;A. Kanayama;I. Kobayashi - 通讯作者:
I. Kobayashi
Does sub-culturing of positive MRSA blood cultures affect vancomycin MICs?
阳性 MRSA 血培养物的传代培养是否会影响万古霉素 MIC?
- DOI:
10.1099/jmm.0.001225 - 发表时间:
2020 - 期刊:
- 影响因子:3
- 作者:
Izumo Kanesaka;Takamitsu Ito;Ritsuko Shishido;M. Nagashima;Akiko Kanayama Katsuse;Hiroshi Takahashi;S. Fujisaki;I. Kobayashi - 通讯作者:
I. Kobayashi
Underestimation of global O2 loss in optimally interpolated historical ocean observations
最佳插值历史海洋观测中全球氧气损失的低估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.9
- 作者:
Takamitsu Ito;Hernan E. Garcia;Zhankun Wang;Shoshiro Minobe;Matthew C. Long;Just, Cebrian;James Reagan;Tim Boyer;Christopher Paver;Courtney Bouchard - 通讯作者:
Courtney Bouchard
上層全球海洋の溶存酸素トレンド
全球海洋上层溶解氧趋势
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Takamitsu Ito; 見延 庄士郎, Matthew C. Long;Curtis Deutsch - 通讯作者:
Curtis Deutsch
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
由于最佳插值方法低估了数十年全球 O2 损失
- DOI:
10.5194/bg-21-747-2024 - 发表时间:
2024 - 期刊:
- 影响因子:4.9
- 作者:
Takamitsu Ito;Hernan E. Garcia;Zhankun Wang;S. Minobe;M. Long;Just Cebrian;Jim Reagan;Tim Boyer;C. Paver;Courtney Bouchard;Y. Takano;S. Bushinsky;A. Cervania;Curtis A. Deutsch - 通讯作者:
Curtis A. Deutsch
Takamitsu Ito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Takamitsu Ito', 18)}}的其他基金
A Mechanistic Study of Bio-Physical Interaction and Air-Sea Carbon Transfer in the Southern Ocean
南大洋生物物理相互作用和气海碳转移的机制研究
- 批准号:
1744755 - 财政年份:2018
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Collaborative Research: Combining Theory and Observations to Constrain Global Ocean Deoxygenation
合作研究:结合理论和观测来抑制全球海洋脱氧
- 批准号:
1737188 - 财政年份:2017
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Interannual variability of oxygen and macro-nutrients in the Labrador Sea
拉布拉多海氧气和大量营养素的年际变化
- 批准号:
1357373 - 财政年份:2014
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
What Controls the Variability of the Southern Ocean Productivity and Carbon Uptake?
是什么控制着南大洋生产力和碳吸收的变化?
- 批准号:
1142009 - 财政年份:2012
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Collaborative research: Understanding the spatial and temporal variability of dissolved oxygen through a hierarchy of models.
合作研究:通过模型层次结构了解溶解氧的空间和时间变化。
- 批准号:
1242313 - 财政年份:2012
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Collaborative research: Understanding the spatial and temporal variability of dissolved oxygen through a hierarchy of models.
合作研究:通过模型层次结构了解溶解氧的空间和时间变化。
- 批准号:
0851497 - 财政年份:2009
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
相似海外基金
Revolutionary Multiparameter Sensor Incorporating Dissolved Oxygen, Salinity, pH and Temperature for the Aquaculture and Environmental Monitoring Industries
适用于水产养殖和环境监测行业的革命性多参数传感器,集成了溶解氧、盐度、pH 值和温度
- 批准号:
83002683 - 财政年份:2023
- 资助金额:
$ 34.79万 - 项目类别:
Innovation Loans
Collaborative Research: Estuarine metabolism and gas exchange determined from dissolved oxygen time series: method development, field evaluation, and application to historical data
合作研究:根据溶解氧时间序列确定河口代谢和气体交换:方法开发、现场评估和历史数据应用
- 批准号:
2311052 - 财政年份:2022
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Optofluidics dissolved oxygen and ammonia sensor
光流控溶解氧和氨传感器
- 批准号:
562986-2021 - 财政年份:2021
- 资助金额:
$ 34.79万 - 项目类别:
University Undergraduate Student Research Awards
Clumped Oxygen Isotope Signature of Marine Dissolved Oxygen
海洋溶解氧的聚集氧同位素特征
- 批准号:
2049298 - 财政年份:2021
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Aeration of hydraulic turbines to increase downstream dissolved oxygen concentration
水轮机曝气以增加下游溶解氧浓度
- 批准号:
528388-2018 - 财政年份:2020
- 资助金额:
$ 34.79万 - 项目类别:
Collaborative Research and Development Grants
Collaborative Research: Estuarine metabolism and gas exchange determined from dissolved oxygen time series: method development, field evaluation, and application to historical data
合作研究:根据溶解氧时间序列确定河口代谢和气体交换:方法开发、现场评估和历史数据应用
- 批准号:
1924445 - 财政年份:2020
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Collaborative Research: Estuarine metabolism and gas exchange determined from dissolved oxygen time series: method development, field evaluation, and application to historical data
合作研究:根据溶解氧时间序列确定河口代谢和气体交换:方法开发、现场评估和历史数据应用
- 批准号:
1924559 - 财政年份:2020
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
An Arctic Ocean sea surface observing network for the partial pressure of carbon dioxide (pCO2), acidity, and dissolved oxygen (DO)
北冰洋海面二氧化碳分压 (pCO2)、酸度和溶解氧 (DO) 观测网络
- 批准号:
1951294 - 财政年份:2020
- 资助金额:
$ 34.79万 - 项目类别:
Standard Grant
Increasing Dissolved oxygen at hydropower turbines
增加水力发电涡轮机的溶解氧
- 批准号:
538784-2019 - 财政年份:2019
- 资助金额:
$ 34.79万 - 项目类别:
University Undergraduate Student Research Awards
Long-term and continuous dissolved oxygen monitoring in soil
土壤溶解氧长期连续监测
- 批准号:
539506-2019 - 财政年份:2019
- 资助金额:
$ 34.79万 - 项目类别:
University Undergraduate Student Research Awards