Collaborative Research: SCH: A Causal AI Digital Twin Framework to Transform Intensive Care Delivery
合作研究:SCH:因果人工智能数字双胞胎框架,以改变重症监护服务
基本信息
- 批准号:2123900
- 负责人:
- 金额:$ 78.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Smart and Connected Health (SCH) award will contribute to the advancement of the national health and welfare by developing a causal AI digital twin framework to support critical care delivery and facilitate the realization of “Healthcare 4.0.” Critical illness from sepsis and pneumonia is the leading cause of in-hospital mortality and a global health priority. While early diagnosis and error-free treatment consistently achieve good outcomes, the progression of critical illness to multiple organ failure often translates to either death or loss of independence. The COVID-19 pandemics have exposed long standing deficiencies in critical care knowledge and practice in hospitals worldwide. The National Academy of Medicine has called for a novel systems science approach to clinical medicine and new methods and strategies to facilitate timely and accurate interventions are needed. This project will provide valuable solutions to critical care delivery by developing a virtual counterpart to the intensive care unit (ICU) bolstered with decision support to inform patient health and care delivery at multiple levels. A multidisciplinary team with engineers, scientists, and clinical professionals has established an ongoing, successful collaboration, and will be committed to this research. In addition, through this research, a diverse group of students and clinical fellows will receive a blend of interdisciplinary training in machine learning, systems engineering, and critical care medicine. This causal AI digital twin framework will be a critical leap forward in support of a more efficient medical education and eventually less error-prone bedside decision making.The goal of this collaborative research is to tackle the challenges in critical care delivery through three integrated tasks: (1) learning a causal AI model underpinning the clinical pathway of critically ill patients, (2) investigation of optimal treatment decisions for critically ill patients in the first 24 hours, and (3) enabling system-level interventions through a digital twin framework. Supported by expert knowledge, the clinical pathway of critically ill sepsis patients will be represented by causal Bayesian networks. Computationally efficient approaches will be developed to learn the networks given high-dimensional and unobservable variables. Reinforcement learning approaches will be developed to investigate the optimal treatment for individual patients in the early stage of patient care. The Systems Engineering Initiative for Patient Safety (SEIPS) 2.0 model will be adapted to the ICU system to identify the principal factors affecting critical care delivery. Lastly, to enable the analysis of the patient-level and the process-level interactions of critical care delivery, the hybridization structure and design between agent-based simulation and discrete-event simulation will be investigated, thereby achieving a reliable hybrid simulation model. The application of this research is expected to enable an ICU digital twin platform that supports the bedside clinicians, educators, and hospital administrators to choose optimal strategies for critical care delivery, thereby mitigating risk of real-life patients.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将通过开发因果AI数字孪生框架,支持关键护理服务,促进“医疗保健4.0”的实现,为国民健康和福利的进步做出贡献。败血症和肺炎引起的重症是院内死亡的主要原因,也是全球卫生重点。虽然早期诊断和无差错治疗始终能取得良好的结果,但危重疾病进展为多器官衰竭往往导致死亡或丧失独立性。COVID-19大流行暴露了世界各地医院在重症监护知识和实践方面长期存在的缺陷。美国国家医学院呼吁对临床医学采用一种新的系统科学方法,并需要新的方法和策略来促进及时和准确的干预。该项目将为重症监护病房(ICU)提供有价值的解决方案,开发一个虚拟的重症监护病房(ICU),并为其提供决策支持,以便在多个层面上为患者健康和护理提供信息。一个由工程师、科学家和临床专业人员组成的多学科团队已经建立了持续的、成功的合作,并将致力于这项研究。此外,通过这项研究,一群不同的学生和临床研究员将接受机器学习、系统工程和重症监护医学方面的跨学科培训。这种因果人工智能数字孪生框架将是支持更有效的医学教育和最终减少易出错的床边决策的关键飞跃。这项合作研究的目标是通过三个综合任务来解决重症监护服务中的挑战:(1)学习一个支持重症患者临床路径的因果AI模型,(2)研究危重患者在最初24小时内的最佳治疗决策,以及(3)通过数字孪生框架实现系统级干预。在专家知识的支持下,重症脓毒症患者的临床路径将用因果贝叶斯网络表示。将开发计算效率高的方法来学习给定高维和不可观察变量的网络。将开发强化学习方法,以在患者护理的早期阶段对个体患者进行最佳治疗。患者安全系统工程倡议(SEIPS) 2.0模型将适用于ICU系统,以确定影响重症护理交付的主要因素。最后,为了分析重症护理交付的患者级和过程级交互,将研究基于agent的仿真和离散事件仿真之间的混合结构和设计,从而实现可靠的混合仿真模型。这项研究的应用有望使ICU数字双胞胎平台能够支持床边临床医生、教育工作者和医院管理人员选择关键护理交付的最佳策略,从而降低现实生活中患者的风险。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling of Critically Ill Patient Pathways to Support Intensive Care Delivery
- DOI:10.1109/lra.2022.3183253
- 发表时间:2022-07-01
- 期刊:
- 影响因子:5.2
- 作者:Trevena, William;Lal, Amos;Gajic, Ognjen
- 通讯作者:Gajic, Ognjen
Gaining consensus on expert rule statements for acute respiratory failure digital twin patient model in intensive care unit using a Delphi method.
- DOI:10.17305/bb.2023.9344
- 发表时间:2023-11-03
- 期刊:
- 影响因子:0
- 作者:Montgomery, Amy J.;Litell, John;Dang, Johnny;Flurin, Laure;Gajic, Ognjen;Lal, Amos
- 通讯作者:Lal, Amos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phillip Schulte其他文献
CLINICAL CHARACTERISTICS, RESPONSE TO EXERCISE AND OUTCOMES IN HEART FAILURE PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE: FINDINGS FROM HEART FAILURE – A CONTROLLED TRIAL INVESTIGATING OUTCOMES OF EXERCISE TRAINING (HF-ACTION)
- DOI:
10.1016/s0735-1097(12)60936-x - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
Robert J. Mentz;Phillip Schulte;Dalane Kitzman;Mona Fiuzat;William Kraus;Ileana L. Piña;Steven Keteyian;Jerome Fleg;Stephen Ellis;David Whellan;Christopher O'Connor - 通讯作者:
Christopher O'Connor
Contemporary Contamination of Urban Floodplains in Chennai (India)
印度钦奈城市洪泛区的当代污染
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Luisa Bellanova;Fabienne Uphoff;P. Bellanova;Nina Engels;P. P;Yaswanth Pulipatti;F. Lehmkuhl;Phillip Schulte;K. Reicherter;J. Schwarzbauer - 通讯作者:
J. Schwarzbauer
Mo1254: PREVALENCE OF INTRADUCTAL PAPILLARY MUCINOUS NEOPLASMS AND THEIR RELATIONSHIP TO PANCREATIC CANCER: A STUDY OF POPULATION-BASED COHORTS
- DOI:
10.1016/s0016-5085(22)61759-1 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Jaime De La Fuente;Arjun Chatterjee;Jacob Lui;Avinash Nehra;Ryan J. Lennon;Rondell Graham;Hiroki Nagayama;Richard Pendegraft;Phillip Schulte;Karen Doering;Adriana Delgado;Gloria M. Petersen;Suresh Chari;Naoki Takahashi;Shounak Majumder - 通讯作者:
Shounak Majumder
Peer review of clinical and translational research manuscripts: Perspectives from statistical collaborators
临床和转化研究手稿的同行评审:统计合作者的观点
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.6
- 作者:
Phillip Schulte;Judith D. Goldberg;Robert A. Oster;W. Ambrosius;Lauren Balmert Bonner;Howard Cabral;Rickey E. Carter;Ye Chen;Manisha Desai;Dongmei Li;C. Lindsell;Gina‐Maria Pomann;E. Slade;Tor D. Tosteson;Fang Yu;Heidi Spratt - 通讯作者:
Heidi Spratt
DOES BASELINE GLOBAL LONGITUDINAL STRAIN PREDICT MORTALITY IN HIGH RISK PATIENTS WITH AORTIC STENOSIS AND LEFT VENTRICULAR DYSFUNCTION?
- DOI:
10.1016/s0735-1097(15)61982-9 - 发表时间:
2015-03-17 - 期刊:
- 影响因子:
- 作者:
Amit Vora;Fawaz Alenezi;Allison Dunning;Phillip Schulte;Svati Shah;Joseph Kisslo;John Harrison;Eric Velazquez;Zainab Samad - 通讯作者:
Zainab Samad
Phillip Schulte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306659 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306740 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
- 批准号:
2320678 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306738 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306792 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306739 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306709 - 财政年份:2023
- 资助金额:
$ 78.42万 - 项目类别:
Standard Grant