SCH: Tackling Progressive Disease - Learning from Longitudinal Observational Clinical Data in the Presence of Noise and Confounding
SCH:应对进展性疾病 - 在存在噪声和混杂因素的情况下从纵向观察临床数据中学习
基本信息
- 批准号:2124127
- 负责人:
- 金额:$ 115万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There is a pressing need to improve our ability to stratify and treat patients with or at risk of developing Alzheimer’s disease (AD). To this end, efforts like the Alzheimer’s Disease Neuroimaging Initiative (ADNI) aim to collect data on a wide range of biomarkers and have enrolled hundreds of participants who are followed longitudinally. While such studies are important and necessary, there is evidence to suggest that the development of AD starts as early as 22 years prior to symptom onset. Thus, it will be some time before such prospective studies produce enough data to shed light on the long-term progression of the disease. This project moves beyond curated datasets like ADNI and develops new techniques that can leverage routinely collected electronic health record (EHR) data for novel analyses of patient trajectories prior to and following a diagnosis with mild cognitive impairment and AD. Tools for estimating patient risk from observational data have the potential to generalize beyond AD to other conditions that progress slowly over the course of years. We expect the proposed work to lay the groundwork for clinical systems that directly impact society by identifying patients most likely to benefit from early intervention and recommend actions to reduce risk through measuring the effect of modifiable risk factors.This work advances the fields of machine learning (ML) for patient risk stratification and individual treatment effect estimation in the context of developing tools for estimating patient risk for AD. In terms of risk stratification, new approaches for learning in the presence of label noise and for multi-event survival analysis that leverage information about the constraints on the ordering of events (e.g., death cannot precede AD) are explored. In addition, novel ML techniques are developed to advance our ability to estimate causal effects using observational data (e.g., how does hypertension affect one’s risk of developing AD), with a focus on addressing bias related to confounding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
迫切需要提高我们对患有阿尔茨海默病(AD)或有发展风险的患者进行分层和治疗的能力。为此,像阿尔茨海默病神经影像学倡议(ADNI)这样的努力旨在收集各种生物标志物的数据,并招募了数百名参与者进行纵向跟踪。虽然这些研究是重要和必要的,但有证据表明,AD的发展早在症状发作前22年就开始了。因此,这将是一段时间之前,这样的前瞻性研究产生足够的数据来阐明疾病的长期进展。该项目超越了ADNI等策划的数据集,并开发了新技术,可以利用常规收集的电子健康记录(EHR)数据对轻度认知障碍和AD诊断前后的患者轨迹进行新的分析。从观察数据中估计患者风险的工具有可能从AD推广到多年来进展缓慢的其他疾病。我们希望拟议的工作奠定基础的临床系统,直接影响社会,通过识别患者最有可能受益于早期干预,并建议采取行动,以降低风险,通过测量可修改的风险因素的影响。这项工作的进步领域的机器学习(ML)的患者风险分层和个人治疗效果估计的背景下,开发工具,估计患者的AD风险。在风险分层方面,用于在标签噪声存在下学习和用于多事件生存分析的新方法利用关于事件排序的约束的信息(例如,死亡不能先于AD)进行探索。此外,开发了新的ML技术,以提高我们使用观察数据估计因果效应的能力(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leveraging an Alignment Set in Tackling Instance-Dependent Label Noise
- DOI:10.48550/arxiv.2307.04868
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Donna Tjandra;J. Wiens
- 通讯作者:Donna Tjandra;J. Wiens
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jenna Wiens其他文献
Diagnosing bias in data-driven algorithms for healthcare
诊断医疗保健数据驱动算法中的偏见
- DOI:
10.1038/s41591-019-0726-6 - 发表时间:
2020-01-13 - 期刊:
- 影响因子:50.000
- 作者:
Jenna Wiens;W. Nicholson Price;Michael W. Sjoding - 通讯作者:
Michael W. Sjoding
‘No growth to date’? Predicting positive blood cultures in critical illness
- DOI:
10.1007/s00134-019-05917-2 - 发表时间:
2020-01-21 - 期刊:
- 影响因子:21.200
- 作者:
Vincent X. Liu;Jenna Wiens - 通讯作者:
Jenna Wiens
Predicting 5‐year dementia conversion in veterans with mild cognitive impairment
预测患有轻度认知障碍的退伍军人 5 年痴呆转化情况
- DOI:
10.1002/dad2.12572 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chase Irwin;Donna Tjandra;Chengcheng Hu;Vinod Aggarwal;Amanda Lienau;Bruno Giordani;Jenna Wiens;Raymond Q. Migrino - 通讯作者:
Raymond Q. Migrino
Learning control-ready forecasters for Blood Glucose Management
- DOI:
10.1016/j.compbiomed.2024.108995 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Harry Rubin-Falcone;Joyce M. Lee;Jenna Wiens - 通讯作者:
Jenna Wiens
Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice: emJACC/em State-of-the-Art Review
利用人工智能变革心血管护理:从发现到实践:《美国心脏病学会杂志》最新进展综述
- DOI:
10.1016/j.jacc.2024.05.003 - 发表时间:
2024-07-02 - 期刊:
- 影响因子:22.300
- 作者:
Rohan Khera;Evangelos K. Oikonomou;Girish N. Nadkarni;Jessica R. Morley;Jenna Wiens;Atul J. Butte;Eric J. Topol - 通讯作者:
Eric J. Topol
Jenna Wiens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jenna Wiens', 18)}}的其他基金
CAREER: Adaptable, Intelligible, and Actionable Models: Increasing the Utility of Machine Learning in Clinical Care
职业:适应性强、易理解且可操作的模型:提高机器学习在临床护理中的实用性
- 批准号:
1553146 - 财政年份:2016
- 资助金额:
$ 115万 - 项目类别:
Continuing Grant
相似海外基金
Zero_HiddenHunger_EU - Tackling micronutrient malnutrition and hidden hunger to improve health in the EU
Zero_HiddenHunger_EU - 解决微量营养素营养不良和隐性饥饿问题,以改善欧盟的健康
- 批准号:
10108303 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
EU-Funded
Tackling Youth Loneliness in Urban Areas: Measuring feasibility, acceptability and benefits of a social interaction intervention
解决城市地区青少年的孤独感:衡量社交互动干预的可行性、可接受性和益处
- 批准号:
ES/Z502522/1 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
Research Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
Research Grant
Co-Creating Asset and Place-Based Approaches to Tackling Refugee and Migrant Health Exclusion
共同创造基于资产和地点的方法来解决难民和移民健康排斥问题
- 批准号:
AH/Z505390/1 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
Research Grant
Tackling planning delays and housing under-supply across England: Can inter-municipal cooperation between local planning authorities help?
解决英格兰各地的规划延误和住房供应不足问题:地方规划当局之间的跨市合作能提供帮助吗?
- 批准号:
ES/Z502510/1 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
Research Grant
Tackling animal & zoonotic infections together
对付动物
- 批准号:
BB/Z515061/1 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
Research Grant
Tackling micronutrient malnutrition and hidden hunger to improve health in the EU
解决微量营养素营养不良和隐性饥饿问题,以改善欧盟的健康状况
- 批准号:
10109719 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
EU-Funded
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
Mid-Career Industry Fellowships
Tackling food-related single-use plastics in diverse consumption contexts
在不同的消费环境中解决与食品相关的一次性塑料问题
- 批准号:
DE240100100 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
Discovery Early Career Researcher Award
Tackling antimicrobial resistance across dentistry in Sub-Saharan Africa.
解决撒哈拉以南非洲牙科领域的抗菌素耐药性问题。
- 批准号:
MR/Y019695/1 - 财政年份:2024
- 资助金额:
$ 115万 - 项目类别:
Research Grant














{{item.name}}会员




