CAREER: Adaptable, Intelligible, and Actionable Models: Increasing the Utility of Machine Learning in Clinical Care
职业:适应性强、易理解且可操作的模型:提高机器学习在临床护理中的实用性
基本信息
- 批准号:1553146
- 负责人:
- 金额:$ 50.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, the availability of clinically relevant datasets has grown enormously. A good understanding of how to organize, process, and transform these data into actionable knowledge is crucial. This research aims to unlock the potential of these data through the exploration of new fundamental research directions and approaches in machine learning. Targeting patients identified as high-risk by through computational data-driven models could reduce the burden of disease in a cost-effective manner. While machine learning opportunities in medicine continue to grow, there have been relatively few successes regarding translation to practice. Clinicians still base the bulk of their daily decisions on relatively small amounts of patient-specific data. The technical contributions made here will enable the meaningful use of complex medical data. Beyond the long-term societal impact, this work will provide valuable student training through research projects related to the proposed objectives. Targeted outreach activities that focus on the societal impacts of computational research will attract a diverse set of graduate students to the field. In addition, this work will help lay the foundation for a new project-based course focusing on applications of machine learning in clinical care. As the field continues to grow, such courses will become critical for equipping the next generation of students with the required tools and insights. Finally, critical inter-departmental collaborations between computer science and engineering and medicine will grow as a result of this work, leading to the enrichment of both fields. The primary research objective of this proposal is to increase the utility of machine learning in clinical care, through the exploration of new fundamental research directions and approaches in ML. For data-driven predictive models to become widely and safely adopted in clinical care, there remain several key research challenges that the ML community must address: poor adaptability to complex unexpected changes in patient populations and clinical protocols, insufficient intelligibility of accurate but uninterpretable models, and absence of actionability, with accuracy overcoming actionability. The PI proposes the development of new transfer learning techniques for learning robust and adaptable models in a wide range of scenarios. Experiments and evaluations with large-scale clinical datasets will offer insight into how these data change over time, and a better understanding of when and how models should adapt. Clinical decision models and software are seldom incorporated into practice because they are either black-box or the output (while accurate) does not offer any insight into how to act. One way to increase the intelligibility of models is to focus on building clinically meaningful features. Another way to increase intelligibility is through sparsity. The PI will investigate feature engineering/selection methods for learning useful abstractions that automatically leverage expert knowledge and for learning models based on actionable features. The PI will explore structured regularization techniques to select modifiable features. To gain a better understanding of how different actions affect patient risk, the PI will address the limitations of causal inference in the context of high-dimensional observational datasets. This research will yield methods for producing clinically meaningful inputs, and methods for jointly optimizing sparsity and actionability. The proposed work will yield novel techniques for extracting and building adaptable, intelligible, and actionable models from patient data. An emphasis on adaptable solutions will ensure that such techniques can be safely adopted long-term. The study of techniques for dealing with the inherent heterogeneity of the data (e.g., different patient populations from across multiple sites) will not only increase the utility of the data but will lead to more general advances in the field of transfer learning. A focus on intelligibility - a quality that is often overlooked by the machine learning community - promises to increase the utility of such models, since clinicians are more likely to adopt a model they can check and understand. Prioritizing actionable models will yield new strategies for causal analysis in high-dimensional observational settings. This, in turn, will enable the generation of new hypotheses regarding causal relationships in clinical medicine.
近年来,临床相关数据集的可用性大大增加。很好地理解如何组织、处理和将这些数据转换为可操作的知识是至关重要的。本研究旨在通过探索机器学习中新的基础研究方向和方法来释放这些数据的潜力。通过计算数据驱动的模型,针对确定为高风险的患者,可以以具有成本效益的方式减轻疾病负担。虽然机器学习在医学领域的机会持续增长,但在将其转化为实践方面取得的成功相对较少。临床医生的大部分日常决策仍然是基于相对少量的患者具体数据。在此作出的技术贡献将使复杂的医疗数据能够得到有意义的利用。除了长期的社会影响之外,这项工作还将通过与拟议目标相关的研究项目为学生提供有价值的培训。专注于计算研究的社会影响的有针对性的推广活动将吸引各种各样的研究生进入该领域。此外,这项工作将有助于为一门新的基于项目的课程奠定基础,该课程侧重于机器学习在临床护理中的应用。随着该领域的不断发展,这些课程将成为为下一代学生提供所需工具和见解的关键。最后,计算机科学、工程和医学之间重要的跨部门合作将因这项工作而增长,从而丰富这两个领域。本提案的主要研究目标是通过探索ML中新的基础研究方向和方法来增加机器学习在临床护理中的效用。为了使数据驱动的预测模型在临床护理中得到广泛和安全的采用,ML社区必须解决几个关键的研究挑战:对患者群体和临床方案复杂的意外变化适应性差,准确但不可解释的模型可理解性不足,缺乏可操作性,准确性胜过可操作性。PI建议开发新的迁移学习技术,用于在广泛的场景中学习鲁棒和适应性模型。大规模临床数据集的实验和评估将有助于深入了解这些数据如何随时间变化,并更好地了解模型何时以及如何适应。临床决策模型和软件很少被纳入实践,因为它们要么是黑盒,要么输出(虽然准确)不能提供任何关于如何行动的见解。提高模型可理解性的一种方法是专注于构建临床有意义的特征。另一种提高可理解性的方法是通过稀疏性。PI将研究特征工程/选择方法,以学习自动利用专家知识的有用抽象,以及基于可操作特征的学习模型。PI将探索结构化正则化技术来选择可修改的特征。为了更好地理解不同的行为如何影响患者风险,PI将在高维观察数据集的背景下解决因果推理的局限性。这项研究将产生产生临床有意义的输入的方法,以及联合优化稀疏性和可操作性的方法。提出的工作将产生从患者数据中提取和构建适应性强、可理解和可操作的模型的新技术。强调适应性解决办法将确保这些技术能够长期安全采用。研究处理数据固有异质性的技术(例如,来自多个地点的不同患者群体)不仅会增加数据的实用性,而且会导致迁移学习领域的更普遍进展。对可理解性的关注——一种经常被机器学习社区忽视的质量——有望增加此类模型的效用,因为临床医生更有可能采用他们可以检查和理解的模型。优先考虑可操作的模型将为高维观测环境中的因果分析产生新的策略。反过来,这将使关于临床医学因果关系的新假设得以产生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jenna Wiens其他文献
Diagnosing bias in data-driven algorithms for healthcare
诊断医疗保健数据驱动算法中的偏见
- DOI:
10.1038/s41591-019-0726-6 - 发表时间:
2020-01-13 - 期刊:
- 影响因子:50.000
- 作者:
Jenna Wiens;W. Nicholson Price;Michael W. Sjoding - 通讯作者:
Michael W. Sjoding
‘No growth to date’? Predicting positive blood cultures in critical illness
- DOI:
10.1007/s00134-019-05917-2 - 发表时间:
2020-01-21 - 期刊:
- 影响因子:21.200
- 作者:
Vincent X. Liu;Jenna Wiens - 通讯作者:
Jenna Wiens
Predicting 5‐year dementia conversion in veterans with mild cognitive impairment
预测患有轻度认知障碍的退伍军人 5 年痴呆转化情况
- DOI:
10.1002/dad2.12572 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chase Irwin;Donna Tjandra;Chengcheng Hu;Vinod Aggarwal;Amanda Lienau;Bruno Giordani;Jenna Wiens;Raymond Q. Migrino - 通讯作者:
Raymond Q. Migrino
Learning control-ready forecasters for Blood Glucose Management
- DOI:
10.1016/j.compbiomed.2024.108995 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Harry Rubin-Falcone;Joyce M. Lee;Jenna Wiens - 通讯作者:
Jenna Wiens
Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice: emJACC/em State-of-the-Art Review
利用人工智能变革心血管护理:从发现到实践:《美国心脏病学会杂志》最新进展综述
- DOI:
10.1016/j.jacc.2024.05.003 - 发表时间:
2024-07-02 - 期刊:
- 影响因子:22.300
- 作者:
Rohan Khera;Evangelos K. Oikonomou;Girish N. Nadkarni;Jessica R. Morley;Jenna Wiens;Atul J. Butte;Eric J. Topol - 通讯作者:
Eric J. Topol
Jenna Wiens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jenna Wiens', 18)}}的其他基金
SCH: Tackling Progressive Disease - Learning from Longitudinal Observational Clinical Data in the Presence of Noise and Confounding
SCH:应对进展性疾病 - 在存在噪声和混杂因素的情况下从纵向观察临床数据中学习
- 批准号:
2124127 - 财政年份:2021
- 资助金额:
$ 50.28万 - 项目类别:
Standard Grant
相似海外基金
Supporting Elementary Students’ Computer Science Skills and Interest through Engagement with Low-cost, Adaptable Robots
通过与低成本、适应性强的机器人互动来支持小学生的计算机科学技能和兴趣
- 批准号:
2342489 - 财政年份:2024
- 资助金额:
$ 50.28万 - 项目类别:
Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 50.28万 - 项目类别:
Continuing Grant
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332276 - 财政年份:2024
- 资助金额:
$ 50.28万 - 项目类别:
Standard Grant
Sustainable and adaptable manufacturing of Gold Nanoparticles for use in Biomedical Diagnostics
用于生物医学诊断的金纳米粒子的可持续和适应性制造
- 批准号:
10103609 - 财政年份:2024
- 资助金额:
$ 50.28万 - 项目类别:
Investment Accelerator
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332275 - 财政年份:2024
- 资助金额:
$ 50.28万 - 项目类别:
Standard Grant
Research Hub for Decarbonised Adaptable and Resilient Transport Infrastructures (DARe)
脱碳、适应性和弹性交通基础设施研究中心 (DARe)
- 批准号:
EP/Y024257/1 - 财政年份:2023
- 资助金额:
$ 50.28万 - 项目类别:
Research Grant
SBIR Phase II: Adaptable Ad Hoc Network Architecture for Rapid Infrastructure Development in Disaster Zones
SBIR 第二阶段:用于灾区快速基础设施开发的适应性 Ad Hoc 网络架构
- 批准号:
2322049 - 财政年份:2023
- 资助金额:
$ 50.28万 - 项目类别:
Cooperative Agreement
Adaptable Community-Engaged Intervention for Violence Prevention: Michigan Model
适应性强的社区参与暴力预防干预措施:密歇根模式
- 批准号:
10812130 - 财政年份:2023
- 资助金额:
$ 50.28万 - 项目类别:
Development of an individually adaptable soft hand rehabilitation system
开发适合个人的软手康复系统
- 批准号:
23KJ0307 - 财政年份:2023
- 资助金额:
$ 50.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Creating Communities of Practice to Support NOYCE Scholars in Becoming More Adaptable Mathematics Teachers
创建实践社区以支持 NOYCE 学者成为适应性更强的数学教师
- 批准号:
2243398 - 财政年份:2023
- 资助金额:
$ 50.28万 - 项目类别:
Continuing Grant














{{item.name}}会员




