MIM: Deciphering and Optimizing Cross-Domain Interactions to Increase Productivity in High pH-High Alkalinity Microalgae Communities

MIM:破译和优化跨域相互作用以提高高 pH-高碱度微藻群落的生产力

基本信息

  • 批准号:
    2125083
  • 负责人:
  • 金额:
    $ 119.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Microalgae are responsible for more than half of the carbon dioxide fixation worldwide and often have greater photosynthetic efficiencies than terrestrial plants. Microalgae can use this fixed carbon to produce compounds like lipids that have value as an alternative to crude oil for biofuel and chemical production. Furthermore, microalgae can be cultivated on marginal lands using waste water; thus, they their commercial cultivation does not compete directly with existing food and feed crops. A major challenge for the large-scale cultivation of microalgae is the lack of understanding about how microbial communities affect algae growth. This interdisciplinary research and training project will use microbiology and molecular biology approaches, combined with engineering and computer modeling approaches, to bridge gaps in the understanding of algal microbiome interactions to achieve maximum productivity and culture stability. The research approaches and results will be transferrable to other natural and industrial systems relevant to society such as wastewater treatment, nutrient cycling, and nutraceutical production. Broader societal outcomes will include improved algal cultivation strategies, the training of graduate and undergraduate students with an emphasis on integrating students from tribal colleges in Montana, and the development of educational outreach modules for K-12 classrooms. This research project will focus on understanding and ultimately controlling the microbiome of highly productive, high pH/high alkalinity algal cultures for stable and robust primary productivity. Physical and metabolic interactions will be identified and quantified in the algae’s natural habitat and in enrichment cultures. Mathematical models of organismal and community metabolisms will be developed and used to predict possible improvements in the microbiome and in interspecies interactions. These predictions will be tested using well-defined experiments including next generation sequencing and physiology studies enabling observation of carbon and nitrogen exchange at both the culture and single-cell levels. Iterative refinement of modeling and experiments will lead to an in-depth understanding and ultimately optimization of community productivity, robustness, and stability. On a broader, ecological level, this work will decipher interactions of organisms in high pH, high alkalinity environments, which are among the most productive ecosystems in the world. The results and approaches to be developed will be readily transferrable to other phototrophic-driven environments as well as to other multi-domain microbial communities such as fungal-bacterial co-cultures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微藻对全球一半以上的二氧化碳固定负有责任,并且通常比陆生植物具有更高的光合效率。微藻可以利用这种固定碳来生产像脂类这样的化合物,这些化合物在生物燃料和化学生产中具有替代原油的价值。此外,微藻可以利用废水在边缘土地上种植;因此,它们的商业种植并不直接与现有的粮食和饲料作物竞争。大规模培养微藻的一个主要挑战是缺乏对微生物群落如何影响藻类生长的了解。这个跨学科的研究和培训项目将使用微生物学和分子生物学方法,结合工程和计算机建模方法,弥合对藻类微生物组相互作用的理解差距,以实现最大的生产力和培养稳定性。研究方法和成果将转移到与社会相关的其他自然和工业系统,如废水处理、营养循环和营养食品生产。更广泛的社会成果将包括改进藻类培养策略,培训研究生和本科生,重点是整合蒙大拿州部落学院的学生,以及为K-12教室开发教育推广模块。本研究项目将重点了解并最终控制高产、高pH/高碱度藻类培养物的微生物群,以实现稳定和强大的初级生产力。将在藻类的自然栖息地和富集培养中确定和量化物理和代谢相互作用。将开发生物和群落代谢的数学模型,并用于预测微生物组和种间相互作用的可能改善。这些预测将通过定义良好的实验进行验证,包括下一代测序和生理学研究,从而在培养和单细胞水平上观察碳和氮交换。建模和实验的迭代细化将导致对社区生产力、健壮性和稳定性的深入理解和最终优化。在更广泛的生态层面上,这项工作将破译生物在高pH、高碱度环境中的相互作用,这些环境是世界上最具生产力的生态系统之一。研究结果和开发的方法将很容易转移到其他光养驱动的环境以及其他多领域微生物群落,如真菌-细菌共培养。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Gerlach其他文献

Strengthening biopolymer adhesives through ureolysis-induced calcium carbonate precipitation
通过脲解诱导碳酸钙沉淀增强生物聚合物胶粘剂
  • DOI:
    10.1038/s41598-024-84087-8
  • 发表时间:
    2025-01-27
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Sobia Anjum;Kendall Parks;Kaylin Clark;Albert Parker;Chelsea M. Heveran;Robin Gerlach
  • 通讯作者:
    Robin Gerlach
Genome sequence, phylogenetic analysis, and structure-based annotation reveal metabolic potential of emChlorella/em sp. SLA-04
基因组序列、系统发育分析和基于结构的注释揭示了 emChlorella sp. SLA-04 的代谢潜能
  • DOI:
    10.1016/j.algal.2022.102943
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Calvin L.C. Goemann;Royce Wilkinson;William Henriques;Huyen Bui;Hannah M. Goemann;Ross P. Carlson;Sridhar Viamajala;Robin Gerlach;Blake Wiedenheft
  • 通讯作者:
    Blake Wiedenheft
Corrections to: Assessment of Nannochloropsis gaditana growth and lipid accumulation with increased inorganic carbon delivery
  • DOI:
    10.1007/s10811-024-03396-7
  • 发表时间:
    2025-01-02
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Todd C. Pedersen;Robert D. Gardner;Robin Gerlach;Brent M. Peyton
  • 通讯作者:
    Brent M. Peyton
Current insights into the mechanisms and management of infection stones
当前对感染结石机制和管理的见解
  • DOI:
    10.1038/s41585-018-0120-z
  • 发表时间:
    2018-11-23
  • 期刊:
  • 影响因子:
    14.600
  • 作者:
    Erika J. Espinosa-Ortiz;Brian H. Eisner;Dirk Lange;Robin Gerlach
  • 通讯作者:
    Robin Gerlach
Intermittent flow paths in biofilms grown in a microfluidic channel
在微流体通道中生长的生物膜中的间歇流路
  • DOI:
    10.1016/j.advwatres.2025.105018
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Kerem Bozkurt;Christoph Lohrmann;Felix Weinhardt;Daniel Hanke;Raphael Hopp;Robin Gerlach;Christian Holm;Holger Class
  • 通讯作者:
    Holger Class

Robin Gerlach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Gerlach', 18)}}的其他基金

EFRI ELiS: Biofilm-functionalized and -maintained, living infrastructure systems
EFRI ELiS:生物膜功能化和维护的生活基础设施系统
  • 批准号:
    2223756
  • 财政年份:
    2023
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Continuing Grant
SEP Collaborative: Alkaliphilic microalgae-based sustainable & scalable processes for renewable fuels and products
SEP合作:基于嗜碱微藻的可持续发展
  • 批准号:
    1230632
  • 财政年份:
    2012
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Standard Grant
EukaryoticHopanoids: Deciphering the regulatory network behind unusual lipids in eukaryotes
真核Hopanoids:破译真核生物异常脂质背后的调控网络
  • 批准号:
    EP/Y024702/1
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Fellowship
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
  • 批准号:
    MR/Y013891/1
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Research Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
  • 批准号:
    2344586
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Standard Grant
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
  • 批准号:
    2319151
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Continuing Grant
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
  • 批准号:
    BB/Z514810/1
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Fellowship
EVOGOODGENES: Deciphering the genomics and evolution of honest sexual signals
EVOGOODGENES:破译诚实性信号的基因组学和进化
  • 批准号:
    EP/X041921/1
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Research Grant
Deciphering newly uncovered mechanisms of fluid regulation in bacterial RNA-protein networks
破译细菌 RNA-蛋白质网络中新发现的液体调节机制
  • 批准号:
    2349832
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Deciphering the Role of Phytoplankton Community Composition in Southern Ocean Carbon Fluxes
博士后奖学金:OPP-PRF:破译浮游植物群落组成在南大洋碳通量中的作用
  • 批准号:
    2317998
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Standard Grant
BRC-BIO: Deciphering the roles of RNA modifications in regulating responses to abiotic stresses in cereal crops
BRC-BIO:解读 RNA 修饰在调节谷类作物非生物胁迫反应中的作用
  • 批准号:
    2312857
  • 财政年份:
    2024
  • 资助金额:
    $ 119.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了