EFRI ELiS: Biofilm-functionalized and -maintained, living infrastructure systems

EFRI ELiS:生物膜功能化和维护的生活基础设施系统

基本信息

  • 批准号:
    2223756
  • 负责人:
  • 金额:
    $ 199.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Infrastructure is essential for the safety, economic well-being and health of our nation. However, continuing to build and maintain infrastructure using traditional, solely structural materials is environmentally and financially unsustainable. Sustainable infrastructure development represents a goal for the United States that can only be met through multi-purpose building materials that lower the overall energy and environmental footprint of our built environment. This project contributes to this national need by developing multi-functional and readily repairable infrastructure materials using immobilized microbial communities called ‘biofilms’. Biofilms have the potential to meet diverse infrastructure needs and improve community and environmental health, including through cleaner air and water. This convergent project will leverage social sciences and broaden participation by involving groups that have been disproportionately impacted by environmental harms and infrastructure inequities to ensure new technologies are safe, acceptable, inclusive and beneficial.The project goals are to: (1) structurally optimize infrastructure materials to enable multi-functionalization and on-demand repair through engineered living systems (i.e., biofilms); (2) provide flexibility in functionality via exchangeable, living ‘treatment’ cartridges and through permanent integration of biofilms into infrastructure; and (3) identify and address cultural, social and economic challenges that may impede adoption of engineered, living infrastructure materials through design improvements and evidence-based communication strategies. This work will address fundamental and applied questions regarding reactive transport optimization, hydrogel mechanics and fracturing, building-material optimization, and microbial community interactions. Coupling computationally supported reactive transport modeling with biofilm engineering experiments will generate new insights on how to control desired biofilm functions in infrastructure. Two of Montana State University’s centers for excellence, the Center for Biofilm Engineering and the Center for Science, Technology, Ethics, and Society, will collaborate to integrate Science, Technology, Ethics, and Society (STES) studies and Science, Technology, Engineering and Mathematics (STEM) research. This holistic, innovative approach will allow for assessing and improving the adoption of transformative technologies by opening channels of feedback between stakeholders and the technical team and allowing for design changes to better meet community needs and expectations, particularly for its most vulnerable and marginalized members. Outcomes at the nexus of engineering, biology and social sciences will bolster NSF’s Big Idea of Understanding the Rules of Life and contribute to four of the top seven NSF 2026 Idea Machine topics. This project will work closely with groups that have been disproportionately impacted by environmental harms and infrastructure inequities (including American Indian and rural populations in Montana) and will involve these communities in the research directly to ensure new technologies are safe, acceptable, and beneficial. The Broadening Participation Plan includes partnerships with Tribal Colleges across Montana, recruitment of underrepresented minority students, research experiences for undergraduates, and recurring mentorship and professional development opportunities for trainees.This project is jointly funded by the Emerging Frontiers in Research and Innovation Engineered Living Systems (ELiS) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基础设施对于我们国家的安全,经济福祉和健康至关重要。但是,继续使用传统的,纯粹的结构材料在环境和财务上建立和维护基础设施。可持续基础设施发展代表了美国的目标,只能通过多功能建筑材料来实现,从而降低我们建筑环境的整体能源和环境足迹。该项目通过使用名为“生物膜”的固定的微生物群落开发多功能且易于维修的基础设施材料来促进这种国家需求。生物膜有可能满足潜水员基础设施的需求,并改善社区和环境健康,包括通过清洁的空气和水。这个收敛的项目将利用社会科学并通过涉及受环境危害和基础设施不平等影响不成比例影响的群体来扩大参与,以确保新技术是安全,可接受,包容和有益的新技术。项目目标是:(1)结构上优化基础设施材料,以启用多功能系统化和跨部位化的实用系统(I. I. I. I. I. I. I. emensered Incornersired Inderserifection)(I. I. Endornered)(I. ENDERNERSERED)。 (2)通过可交换的,活着的“治疗”墨盒以及将生物膜永久整合到基础设施中,提供了功能的灵活性; (3)通过设计改进和基于证据的沟通策略来识别和解决可能阻碍工程,生活基础设施材料的文化,社会和经济挑战。这项工作将解决有关反应性运输优化,水凝胶力学和破碎,建筑物材料优化以及微生物社区相互作用的基本问题。使用生物膜工程实验耦合计算支持的反应性传输模型将对如何控制基础设施中所需的生物膜功能产生新的见解。蒙大拿州立大学卓越中心,生物膜工程中心和科学,技术,伦理和社会中心的两个将合作,以整合科学,技术,伦理学和社会(Stes)研究与科学,技术,工程和数学(STEM)研究。这种整体,创新的方法将通过在利益相关者和技术团队之间打开反馈渠道,并允许设计更改以更好地满足社区需求和期望,尤其是针对其最脆弱和最边缘化的成员,从而可以评估和改善变革技术的采用。工程,生物学和社会科学联系的成果将支持NSF理解生活规则的重大想法,并为NSF 2026年前七名Idea Idea Machine主题中的四个做出了贡献。项目将与受环境危害和基础设施不平等(包括蒙大拿州的美洲印第安人和粗糙人口)影响不成比例影响的团体紧密合作,并将直接参与研究中的这些社区,以确保新技术是安全,可接受和有益的。扩大的参与计划包括与蒙大拿州的部落学院的伙伴关系,招募代表性不足的少数群体学生,针对本科生的研究经验以及反复出现的心态和专业发展机会。该项目由新兴领域的研究和创新派遣派遣统计统计数据(ELIS)促进了有能力的研究(EPSSCORTIME SASCORTIMERSITS)(EPSCORTIME SASTORS)。并被认为是使用基金会的知识分子优点和更广泛的审查标准的评估,被认为是宝贵的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Gerlach其他文献

Robin Gerlach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Gerlach', 18)}}的其他基金

MIM: Deciphering and Optimizing Cross-Domain Interactions to Increase Productivity in High pH-High Alkalinity Microalgae Communities
MIM:破译和优化跨域相互作用以提高高 pH-高碱度微藻群落的生产力
  • 批准号:
    2125083
  • 财政年份:
    2021
  • 资助金额:
    $ 199.75万
  • 项目类别:
    Standard Grant
SEP Collaborative: Alkaliphilic microalgae-based sustainable & scalable processes for renewable fuels and products
SEP合作:基于嗜碱微藻的可持续发展
  • 批准号:
    1230632
  • 财政年份:
    2012
  • 资助金额:
    $ 199.75万
  • 项目类别:
    Continuing Grant

相似海外基金

EFRI ELiS: Biosynthetic Additive Manufacturing of Living Building Materials
EFRI ELiS:活性建筑材料的生物合成增材制造
  • 批准号:
    2318057
  • 财政年份:
    2023
  • 资助金额:
    $ 199.75万
  • 项目类别:
    Standard Grant
EFRI ELiS : Carbon Sequestration and Coastal Resilience Through 3D Printed Reefs
EFRI ELiS:通过 3D 打印珊瑚礁实现碳封存和海岸恢复力
  • 批准号:
    2318123
  • 财政年份:
    2023
  • 资助金额:
    $ 199.75万
  • 项目类别:
    Standard Grant
EFRI ELiS: Engineered Living Biofilms (ELBs) for critical mineral biomining and bioremediation applications
EFRI ELiS:用于关键矿物生物采矿和生物修复应用的工程活性生物膜 (ELB)
  • 批准号:
    2317512
  • 财政年份:
    2023
  • 资助金额:
    $ 199.75万
  • 项目类别:
    Standard Grant
EFRI ELiS: Living Microbial Sensors for Real-Time Monitoring of Pathogens in Wastewater
EFRI ELiS:用于实时监测废水中病原体的活微生物传感器
  • 批准号:
    2223678
  • 财政年份:
    2023
  • 资助金额:
    $ 199.75万
  • 项目类别:
    Continuing Grant
EFRI ELiS: Nano-Bio-Hybrid Living Systems for Airborne Biothreat Detection
EFRI ELiS:用于空气生物威胁检测的纳米生物混合生命系统
  • 批准号:
    2318093
  • 财政年份:
    2023
  • 资助金额:
    $ 199.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了