NRT-AI-FW-HTF: Co-Design of Trustworthy AI and Future Work Systems

NRT-AI-FW-HTF:值得信赖的人工智能和未来工作系统的协同设计

基本信息

  • 批准号:
    2125677
  • 负责人:
  • 金额:
    $ 300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The nature and structure of work are fundamentally changing as artificial intelligence (AI) becomes more deeply integrated within the structures of modern workplaces. This integration creates tension between the opportunities for ubiquitous AI to transform the workplace and emerging risks around bias, security, and privacy. Currently, AI tools are being developed at an unusually rapid pace, and deployed into environments where value maximization precedes regulation. The next generation of innovators accordingly needs a new kind of training. For algorithm designers, this means understanding and being sensitive to the context in which their creations may operate in unexpected ways through interaction with users in socio-technical ecosystems. For system designers, this means knowing enough about how AI tools are evolving to reimagine how tasks and processes could and should transform work in ways that fully leverage the potential power of AI tools. This National Science Foundation Research Traineeship (NRT) award to the George Washington University will address these needs by training doctoral students, master’s students, and graduate certificate students who will be prepared to make convergent research contributions to AI in the future workplace in a way that positively impacts society. The project anticipates training one-hundred and twenty (120) students, including twenty-five (25) funded Ph.D. trainees, primarily serving students in the discipline of computer science and systems engineering but with close interaction with the students and faculty in law, media, public affairs, public health, and international affairs.This NRT aims to educate researchers capable of “co-designing” AI algorithms and work systems to unlock new opportunities in both the capabilities of new systems and their “trustworthiness.” To accomplish this, the educational program aims to instill the following: 1) Comfort in bridging distant disciplines. Through novel onboarding sequences and shared experience of cross-disciplinary engagement with peers, mentors, and industry, the program will educate interdisciplinary, “comb-shaped” scholars who have a solid base in either AI algorithms or work system design and are also comfortable engaging deeply with other disciplinary areas fundamental to their chosen research problems. 2) Appreciation for contextually-embedded problem-solving. Important issues arise when well-intentioned systems evolve post-deployment. The NRT emphasizes context early and often as research is being formulated. Summer bootcamps will facilitate research problem formulation that enables early cycles of feedback and testing with a broad set of stakeholders. Additionally, by intertwining students from different programs by engaging them in a professional certificate through the onboarding sequences, informal opportunities will be created for natural cross-pollination from theory to practice and back. 3) Holistic professional identities. Although many Ph.D. programs are starting to build scaffolding to support “soft-skills,” this usually occurs separately from core program elements. This program’s strategy is to make communication, leadership, teamwork, and ethics central to each program element. The bootcamps and seminars will also provide structured opportunities for students to learn, practice, and reinforce their strategies, e.g., engaging with ethics in context. 4) Valuing diverse perspectives in decision-making. AI algorithms tend to exacerbate existing biases, making it especially important to bring diverse perspectives into decision-making to mitigate unintended consequences. Currently, AI adoption is being driven by a relatively homogenous group. There is a need to increase participation from underrepresented groups and expose students to the value of bringing in diverse perspectives early in the process. The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人工智能(AI)越来越深入地融入现代工作场所的结构,工作的性质和结构正在发生根本性的变化。这种整合在无处不在的人工智能改变工作场所的机会与围绕偏见,安全和隐私的新兴风险之间产生了紧张关系。目前,人工智能工具正在以异常快的速度开发,并部署到价值最大化先于监管的环境中。因此,下一代创新者需要一种新的培训。对于算法设计者来说,这意味着理解并敏感于他们的创作可能通过与社会技术生态系统中的用户交互以意想不到的方式运行的上下文。对于系统设计师来说,这意味着要充分了解人工智能工具是如何发展的,以重新设想任务和流程如何能够并且应该以充分利用人工智能工具潜在力量的方式改变工作。这个国家科学基金会研究培训(NRT)奖给乔治华盛顿大学将通过培训博士生,硕士生和研究生证书的学生来解决这些需求,他们将准备在未来的工作场所以积极影响社会的方式为人工智能做出融合的研究贡献。该项目预计将培训一百二十(120)名学生,其中包括二十五(25)个资助的博士学位。该NRT主要为计算机科学和系统工程专业的学生提供服务,但与法律,媒体,公共事务,公共卫生和国际事务的学生和教师密切互动。该NRT旨在培养能够“共同设计”AI算法和工作系统的研究人员,以解锁新系统的能力及其“可信度”的新机会。为了实现这一目标,教育计划的目的是灌输以下内容:1)在桥接遥远的学科舒适。通过新颖的入职序列和与同行,导师和行业的跨学科参与的共享经验,该计划将教育跨学科的“梳形”学者,他们在人工智能算法或工作系统设计方面具有坚实的基础,并且也很舒服深入参与其他学科领域对他们选择的研究问题至关重要。2)对情境嵌入式问题解决的欣赏。当意图良好的系统在部署后发展时,就会出现重要的问题。NRT强调早期背景,并经常在研究制定过程中。夏令营将促进研究问题的制定,使早期的反馈周期和测试与广泛的利益相关者。此外,通过让学生通过入职序列获得专业证书,将来自不同课程的学生交织在一起,将为从理论到实践再回来的自然交叉授粉创造非正式的机会。3)完整的专业身份。虽然很多博士程序开始构建脚手架来支持“软技能”,这通常与核心程序元素分开发生。该计划的战略是使沟通,领导,团队合作和道德中心的每个程序元素。训练营和研讨会还将为学生提供学习,实践和加强他们的策略的结构化机会,例如,与道德结合起来。4)在决策中重视不同的观点。人工智能算法往往会加剧现有的偏见,因此将不同的观点纳入决策过程以减轻意外后果尤为重要。目前,人工智能的采用是由一个相对同质的群体推动的。有必要增加代表性不足的群体的参与,并让学生了解在这一进程的早期引入不同观点的价值。 NSF研究培训(NRT)计划旨在鼓励为STEM研究生教育培训开发和实施大胆的,新的潜在变革模式。该计划致力于通过创新的、基于证据的、与不断变化的劳动力和研究需求相一致的综合培训模式,在高优先级的跨学科或融合研究领域对STEM研究生进行有效培训。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DP2-Pub: Differentially Private High-Dimensional Data Publication With Invariant Post Randomization
  • DOI:
    10.1109/tkde.2023.3265605
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Honglu Jiang;Hao-Chun Yu;Xiuzhen Cheng;Jian Pei;Robert Pless;Jiguo Yu
  • 通讯作者:
    Honglu Jiang;Hao-Chun Yu;Xiuzhen Cheng;Jian Pei;Robert Pless;Jiguo Yu
Emotion and Virality of Food Safety Risk Communication Messages on Social Media
  • DOI:
    10.4148/1051-0834.2391
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Wang;Xiaoli Nan;S. Stanley;Yuan Wang;L. Waks;David A. Broniatowski
  • 通讯作者:
    X. Wang;Xiaoli Nan;S. Stanley;Yuan Wang;L. Waks;David A. Broniatowski
The Opportunists in Innovation Contests: Understanding Whom to Attract and How to Attract Them
创新竞赛中的机会主义者:了解吸引谁以及如何吸引他们
  • DOI:
    10.1080/08956308.2022.2132771
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Vrolijk, Ademir;Szajnfarber, Zoe
  • 通讯作者:
    Szajnfarber, Zoe
Understanding Post-Production Change and Its Implications for System Design: A Case Study in Close Air Support During Desert Storm
了解后期制作变化及其对系统设计的影响:沙漠风暴期间近距离空中支援案例研究
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.2
  • 作者:
    Singh, Aditya;Szajnfarber, Zoe
  • 通讯作者:
    Szajnfarber, Zoe
Knowledge-Augmented Language Models for Cause-Effect Relation Classification
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zoe Szajnfarber其他文献

Moon first versus flexible path exploration strategies: Considering international contributions
  • DOI:
    10.1016/j.spacepol.2011.05.003
  • 发表时间:
    2011-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zoe Szajnfarber;Thomas M.K. Coles;George R. Sondecker;Anthony C. Wicht;Annalisa L. Weigel
  • 通讯作者:
    Annalisa L. Weigel

Zoe Szajnfarber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zoe Szajnfarber', 18)}}的其他基金

Collaborative Research: Theory-Grounded Guidelines for Solver-Aware System Architecting (SASA)
协作研究:基于理论的求解器感知系统架构指南 (SASA)
  • 批准号:
    2129574
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Demonstrating the Importance of Research Setting Representativeness in Systems Engineering and Design Research
EAGER/协作研究:展示研究环境代表性在系统工程和设计研究中的重要性
  • 批准号:
    1841192
  • 财政年份:
    2018
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
INSPIRE: Expanding Open Innovation Methods to Complex Engineered Systems
INSPIRE:将开放式创新方法扩展到复杂的工程系统
  • 批准号:
    1535539
  • 财政年份:
    2015
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
EAGER: Exploring Organizational Configuration as a Design Lever
EAGER:探索组织配置作为设计杠杆
  • 批准号:
    1332891
  • 财政年份:
    2013
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant

相似国自然基金

联邦学习驱动下成渝地区职业教育AI产教协同的跨区域数据共享机制与培养方案优化要素机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于AI的光谱-色度耦合动态调控系统技术研究及其在城乡建筑光环境优化中的应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多模态下AI技术融合在教育创新中的应用与关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于职业教育和产学研协同的低成本专用大模型AI系统研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326169
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326194
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326173
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Bridging AI Inequality in Digitally-Mediated Gig Work
FW-HTF-RM:弥合数字化零工工作中的人工智能不平等
  • 批准号:
    2326378
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Collaborative Research: Assistive Intelligence for Cooperative Robot and Inspector Survey of Infrastructure Systems (AI-CRISIS)
FW-HTF-RM:协作研究:协作机器人辅助智能和基础设施系统检查员调查 (AI-CRISIS)
  • 批准号:
    2337277
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326174
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326175
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326195
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了