FW-HTF-RM: Bridging AI Inequality in Digitally-Mediated Gig Work
FW-HTF-RM:弥合数字化零工工作中的人工智能不平等
基本信息
- 批准号:2326378
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Future of Work at the Human-Technology Frontier - Research: Medium (FW-HTF-RM) award supports research to study and mitigate the growing inequality between platforms and workers in digitally-mediated gig work caused by artificial intelligence (AI). The project specifically targets app-based ridesharing, a newly emerging industry with more than 1.5 million drivers in the United States as of 2023. In ridesharing, concerns of inequality such as income disparities and workplace discrimination are frequently observed and reported. This emerging AI inequality is driven by two facets: a technology divide and a data divide. The technology divide pertains to how gig work platforms use advanced AI systems to allocate resources, dispatch tasks, and determine worker pay, while workers lack comparable technological access. The data divide refers to the platforms' collection and consolidation of vast data from all workers and customers to aid their operations, while other parties remain without similar data access. The project will first measure and characterize such AI inequality in rideshare platforms. Based on the derived insights, the research team will design, create, and deploy an AI-enabled data-driven decision-making support system for drivers to help them plan for their work in their best interests, with a long-term goal of bridging AI inequality in rideshare platforms. Outcomes from this project will also benefit other domains of on-demand gig work with algorithmic management, such as online freelancing and data annotation.This project brings together several disciplines, including human-computer interaction, machine learning, labor economics, and sociology of labor. The investigator team is structured to achieve multiple convergent goals. First, the project seeks to quantitatively measure AI inequality between platforms and workers using a data-driven approach. Second, the project will characterize AI inequality and how drivers react to algorithmic management using a mix of qualitative and quantitative methods from a sociological perspective. Utilizing the findings, the research team will develop a bottom-up network of intelligent personal assistants that help drivers plan for their work and make decisions in their best interests. A network of drivers and their assistants share data, which enables the predictive modeling of task demand and supply, customer and worker behaviors, and pricing changes. Lastly, through a field deployment, the research team will study the adoption of the researched system and measure its real-world impacts. This project has been funded by the Future of Work at the Human-Technology Frontier cross-directorate program to promote deeper basic understanding of the interdependent human- technology partnership in work contexts by advancing design of intelligent work technologies that operate in harmony with human workers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项“人类技术前沿工作的未来-研究:媒介”(FW-HTF-RM)奖支持研究和减轻人工智能(AI)导致的数字中介工作中平台和工人之间日益增长的不平等。该项目专门针对基于应用程序的拼车服务,这是一个新兴行业,截至2023年,美国有超过150万名司机。在拼车方面,经常观察到和报告收入差距和工作场所歧视等不平等问题。这种新兴的人工智能不平等是由两个方面驱动的:技术鸿沟和数据鸿沟。技术鸿沟涉及gig工作平台如何使用先进的人工智能系统来分配资源,分派任务和确定工人工资,而工人缺乏可比的技术访问。数据鸿沟是指平台收集和整合来自所有工人和客户的大量数据,以帮助他们的运营,而其他各方仍然没有类似的数据访问。该项目将首先测量和描述拼车平台中的这种AI不平等。基于这些见解,研究团队将为驾驶员设计、创建和部署一个支持人工智能的数据驱动决策支持系统,帮助他们规划自己的工作,以实现最佳利益,长期目标是消除拼车平台中的人工智能不平等。该项目的成果也将有利于其他领域的按需零工工作与算法管理,如在线自由职业者和数据注释。该项目汇集了多个学科,包括人机交互,机器学习,劳动经济学和劳动社会学。调查员团队的结构是为了实现多个趋同目标。首先,该项目旨在使用数据驱动的方法定量衡量平台和工人之间的人工智能不平等。其次,该项目将从社会学的角度描述人工智能的不平等性,以及驾驶员如何使用定性和定量方法对算法管理做出反应。利用这些发现,研究团队将开发一个自下而上的智能个人助理网络,帮助司机规划工作,并做出符合他们最佳利益的决策。司机及其助手的网络共享数据,这使得任务需求和供应,客户和工人行为以及定价变化的预测建模成为可能。最后,通过实地部署,研究小组将研究所研究系统的采用情况,并衡量其对现实世界的影响。该项目由人类技术前沿跨部门计划的未来工作资助,以促进对相互依赖的人类的更深入的基本理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Toby Li其他文献
Toby Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
转HTFα对脊髓继发性损伤和微循环重建的影响
- 批准号:39970755
- 批准年份:1999
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326160 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
- 批准号:
2326198 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326159 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
- 批准号:
2326391 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
FW-HTF-RM: Addressing and Amplifying the Skills of the Future Hispanic and Latino Construction Workforce Using BIM and Augmented Reality
FW-HTF-RM:使用 BIM 和增强现实解决和增强未来西班牙裔和拉丁裔建筑劳动力的技能
- 批准号:
2326134 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
- 批准号:
2326173 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
- 批准号:
2326390 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
FW-HTF-RM: Collaborative Research: Assistive Intelligence for Cooperative Robot and Inspector Survey of Infrastructure Systems (AI-CRISIS)
FW-HTF-RM:协作研究:协作机器人辅助智能和基础设施系统检查员调查 (AI-CRISIS)
- 批准号:
2337277 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
- 批准号:
2326174 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
- 批准号:
2326175 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant