Multimodal Oscillatory Driving Forces and Precise Manipulation of Particle Motion

多模态振荡驱动力和粒子运动的精确操纵

基本信息

  • 批准号:
    2125806
  • 负责人:
  • 金额:
    $ 39.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to answer the question: how do “multimodal” oscillatory forces affect the motion of particles and other objects? Most prior research has focused on “unimodal” forces, which can be characterized by a single frequency (e.g., 1 Hz). In contrast, a multimodal driving force involves the superposition of multiple frequencies (e.g., 1 Hz and 2 Hz). Although multimodal oscillatory forces are more complicated, an object subject to a multimodal force may not move anywhere on average because the average of the force itself is zero. Recent experimental work, however, has revealed that this interpretation is not necessarily correct. Specifically, application of a dual-mode oscillatory electric field induces net motion of particles preferentially towards one electrode, but only if the two frequency modes are the ratio of odd and even numbers (e.g., 3 Hz and 2 Hz). Further preliminary experiments revealed that net motion is also observed for solid objects placed on a flat surface made to vibrate laterally with dual frequency modes, again only if the modes are the ratio of odd and even numbers. These similar observations in two very distinct systems suggest that certain types of multimodal forces can be exploited to precisely manipulate the motion of objects using oscillatory forces. A series of experiments and modeling studies will be conducted on three prototype systems to uncover the mechanism that governs the net motion in response to a multimodal field. Results from the project will be useful in a variety of technological applications, including particle manipulation for lab-on-a-chip devices, electrostatic dehydrators, and particle separations for granular materials.Based on the preliminary observations, this project tests the hypothesis that the net particle electrophoresis and the net vibratory drift both stem from symmetry breaking in the nonlinear driving terms of the respective governing momentum balances, provided the oscillatory driving force is “non-antiperiodic.” High-speed video and particle imaging velocimetry will be used to precisely track the motion of objects in three different experimental systems: particle electrophoresis, charged droplet levitation, and vibrated solid objects. Specific experiments will be aimed at directly testing the hypotheses generated from the proposed mechanism, by systematically varying the ratio of imposed modes, the magnitude of the nonlinear resistances, and the overall amplitude of the driving force. The experimental observations will be tested against corresponding numerical models specific to each system, providing groundbreaking insight on the behavior of nonlinear systems with multimodal fields. Because nonlinear effects are ubiquitous in nature, if corroborated the mechanism proposed here will provide fundamental and broadly applicable impact on how multimodal driving forces can be used to manipulate particle motion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是回答这个问题:“多模态”振荡力如何影响粒子和其他物体的运动? 大多数先前的研究集中在“单峰”力,其可以由单个频率(例如,1 Hz)。 相反,多模态驱动力涉及多个频率的叠加(例如,1 Hz和2 Hz)。 虽然多模态振荡力更复杂,但受到多模态力的物体平均可能不会移动到任何地方,因为力本身的平均值为零。 然而,最近的实验工作表明,这种解释不一定正确。 具体地,双模式振荡电场的施加诱导颗粒优先朝向一个电极的净运动,但仅当两个频率模式是奇数和偶数的比率(例如,3 Hz和2 Hz)。 进一步的初步实验表明,净运动也观察到固体物体放置在一个平面上,使横向振动的双频模式,再次只有当模式是奇数和偶数的比例。 在两个非常不同的系统中的这些类似的观察表明,可以利用某些类型的多模态力来精确地操纵使用振荡力的物体的运动。 一系列的实验和建模研究将在三个原型系统上进行,以揭示控制净运动响应多模态场的机制。 该项目的结果将在各种技术应用中发挥作用,包括用于芯片实验室设备的粒子操纵,静电蒸发器和颗粒材料的粒子分离。基于初步观察,该项目测试了以下假设:净粒子电泳和净振动漂移都源于各自控制动量平衡的非线性驱动项中的对称性破缺,只要振荡驱动力是“非反周期的”。高速视频和粒子成像测速技术将用于精确跟踪三种不同实验系统中物体的运动:粒子电泳,带电液滴悬浮和振动固体物体。具体的实验将旨在直接测试所提出的机制产生的假设,通过系统地改变施加模式的比例,非线性电阻的大小,和驱动力的整体幅度。实验观测结果将针对每个系统的相应数值模型进行测试,为具有多模态场的非线性系统的行为提供突破性的见解。 由于非线性效应在自然界中无处不在,如果得到证实,这里提出的机制将提供基本的和广泛适用的影响,如何多模态驱动力可以用来操纵粒子motion.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Net motion induced by nonantiperiodic vibratory or electrophoretic excitations with zero time average
零时间平均的非反周期振动或电泳激发引起的净运动
  • DOI:
    10.1103/physreve.105.065001
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hashemi, Aref;Tahernia, Mehrdad;Hui, Timothy C.;Ristenpart, William D.;Miller, Gregory H.
  • 通讯作者:
    Miller, Gregory H.
Controlling the direction of steady electric fields in liquid using nonantiperiodic potentials
使用非反周期电势控制液体中稳定电场的方向
  • DOI:
    10.1103/physreve.107.054608
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hashemi, Aref;Tahernia, Mehrdad;Ristenpart, William D.;Miller, Gregory H.
  • 通讯作者:
    Miller, Gregory H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Ristenpart其他文献

Impact of "The Design of Coffee," A General Education Chemical Engineering Course, on Students’ Decisions to Major in STEM Disciplines
化学工程通识课程《咖啡的设计》对学生选择 STEM 学科专业的影响
The use of desiccants for proper moisture preservation in green coffee during storage and transportation
在储存和运输过程中,使用干燥剂来适当保存生咖啡中的水分
  • DOI:
    10.1016/j.jafr.2022.100478
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Laudia Anokye-Bempah;Juliet Han;Kurt Kornbluth;William Ristenpart;Irwin R. Donis-González
  • 通讯作者:
    Irwin R. Donis-González

William Ristenpart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Ristenpart', 18)}}的其他基金

Impact of Salivary Rheology on Expiratory Aerosol Formation in the Vocal Folds during Phonation
唾液流变学对发声期间声带呼气气溶胶形成的影响
  • 批准号:
    2311618
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Formation of Molten Nanocraters on Electrodes during Charge Transfer with Conductive Droplets or Particles
导电液滴或颗粒的电荷转移过程中电极上熔融纳米坑的形成
  • 批准号:
    1707137
  • 财政年份:
    2017
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Influence of Oxidative Stress on Shear-Induced Mechanotransduction in Red Blood Cells
氧化应激对红细胞剪切诱导力转导的影响
  • 批准号:
    1201245
  • 财政年份:
    2012
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CAREER: High Speed Imaging and Chronocoulometry of Charge Transfer Events in Emulsions
职业:乳液中电荷转移事件的高速成像和计时库仑法
  • 批准号:
    1056138
  • 财政年份:
    2011
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Continuing Grant

相似海外基金

Large Amplitude Oscillatory Extension (LAOE)
大振幅振荡扩展 (LAOE)
  • 批准号:
    24K07332
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Development of continuous enzymatic production using a continuous oscillatory baffled reactor
使用连续振荡挡板反应器开发连续酶生产
  • 批准号:
    2847761
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Studentship
Post transcriptional Regulation of Oscillatory clock gene expression during somitogenesis
体节发生过程中振荡时钟基因表达的转录后调控
  • 批准号:
    MR/X018423/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
Innovative Time Integrators for Stiff and Highly Oscillatory Systems
适用于刚性和高振荡系统的创新时间积分器
  • 批准号:
    2309821
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
  • 批准号:
    2238818
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Analysis and Control of Nonlinear Oscillatory Networks for the Design of Novel Cortical Stimulation Strategies
合作研究:用于设计新型皮质刺激策略的非线性振荡网络的分析和控制
  • 批准号:
    2308639
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Standard Grant
Saving energy via drag reduction: a mathematical description of oscillatory flows
通过减阻节能:振荡流的数学描述
  • 批准号:
    EP/W021099/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Research Grant
Oscillatory signals in the flaring solar chromosphere
耀斑太阳色球层中的振荡信号
  • 批准号:
    2888420
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
    Studentship
Cortical oscillatory dynamics and decision deficits in suicidal behavior - Resubmission
自杀行为中的皮质振荡动力学和决策缺陷 - 重新提交
  • 批准号:
    10663476
  • 财政年份:
    2023
  • 资助金额:
    $ 39.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了