CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
基本信息
- 批准号:2238818
- 负责人:
- 金额:$ 55.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project involves research at the interface of Fourier analysis and geometric measure theory. Fourier analysis studies the relation between a function and its Fourier transform. The Fourier transform of a function, in rough terms, represents the function via a superposition of frequencies. Geometric measure theory studies the geometric properties of sets and measures under transformations. Fractal sets, or sets with highly irregular geometry, are of particular interest in this regard. Recently, the connection between Fourier analysis and geometric measure theory has led to substantial progress in both fields. This project explores the interaction between these two fields, along with possible applications to other fields such as dynamics and number theory. The project also supports workshops for graduate students and early-career mathematicians: these events will promote mathematical expertise within the indicated research areas, will contribute to the professional training of participants, and will foster new research collaborations.The project combines work in restriction theory (within Fourier analysis) and the theory of projections (within geometric measure theory). One component of the planned research involves the study of the mass of a function, with Fourier transform supported on the sphere, on a fractal set. Another component investigates the dimensions of fractal sets under certain linear or nonlinear maps parametrized by curved manifolds. A final component concerns the Kakeya conjecture, which asks how large must a set be if it contains a unit line segment in every direction. These three components, while distinct, are highly interrelated, and progress in each area is anticipated to inform ongoing work in all of these areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目涉及傅立叶分析与几何测量理论的交叉研究。傅里叶分析研究一个函数和它的傅里叶变换之间的关系。一个函数的傅里叶变换,粗略地说,就是通过频率的叠加来表示这个函数。几何测度论研究集合和测度在变换下的几何性质。分形集,或具有高度不规则几何的集,在这方面特别有趣。近年来,傅里叶分析与几何测量理论之间的联系使这两个领域都取得了实质性的进展。该项目探索了这两个领域之间的相互作用,以及可能应用于其他领域,如动力学和数论。该项目还支持研究生和早期职业数学家研讨会:这些活动将促进指定研究领域的数学专业知识,将有助于参与者的专业培训,并将促进新的研究合作。该项目结合了限制理论(傅里叶分析)和投影理论(几何测量理论)的工作。计划研究的一个组成部分是研究一个函数的质量,傅里叶变换支持在球上,分形集合上。另一部分研究了由弯曲流形参数化的线性或非线性映射下分形集的维数。最后一个组成部分与Kakeya猜想有关,该猜想问的是,如果一个集合在每个方向上都包含一个单位线段,它必须有多大。这三个组成部分虽然不同,但高度相互关联,预计每个领域的进展将为所有这些领域正在进行的工作提供信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Wang其他文献
HippocampusSubunit Expression in the Mouse Calcium Current Amplitude and Affect Calcium Glucocorticoids Specifically Enhance L-Type
小鼠海马亚基表达钙电流幅度并影响钙糖皮质激素特异性增强 L 型
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yongjun Qin;S. Spijker;G. Smit;M. Joëls;Y. Yatomi;T. Fujita;Fumiko Kawakami;T. Shimosawa;S. Mu;Hong Wang;S. Ogura;R. Sarabdjitsingh;H. Karst - 通讯作者:
H. Karst
LTD and LTP induced by transcranial magnetic stimulation in auditory cortex
听觉皮层经颅磁刺激诱导的LTD和LTP
- DOI:
10.1097/00001756-199601310-00035 - 发表时间:
1996 - 期刊:
- 影响因子:1.7
- 作者:
Hong Wang;Xu Wang;H. Scheich - 通讯作者:
H. Scheich
On the Data-Driven Materials Innovation Infrastructure
论数据驱动的材料创新基础设施
- DOI:
10.1016/j.eng.2020.04.004 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hong Wang;X. Xiang;Lanting Zhang - 通讯作者:
Lanting Zhang
Research on circuits detection system based on reverse simulation
基于逆向仿真的电路检测系统研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Qi;H. Zhao;Hong Wang;W. Quan;Min Chang;Minna Ge;Yong;Kunpeng Li;Xiaofang Lin - 通讯作者:
Xiaofang Lin
The internal strain effect on Tc in the YBaAlCu oxide superconductor
YBaAlCu氧化物超导体中内应变对Tc的影响
- DOI:
10.1002/pssa.2211090132 - 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Yuhuan Xu;Zhongrong Li;Chaorui Li;Xianduan Lin;Wu Li;Wanming Lao;Hong Wang;Guowei Chen - 通讯作者:
Guowei Chen
Hong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Wang', 18)}}的其他基金
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2055544 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2141426 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
- 批准号:
2012291 - 财政年份:2020
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
- 批准号:
1954422 - 财政年份:2020
- 资助金额:
$ 55.48万 - 项目类别:
Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
- 批准号:
2000988 - 财政年份:2020
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
- 批准号:
1664708 - 财政年份:2016
- 资助金额:
$ 55.48万 - 项目类别:
Continuing Grant
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
- 批准号:
1620194 - 财政年份:2016
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
- 批准号:
1216923 - 财政年份:2012
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
相似海外基金
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振荡积分
- 批准号:
2200470 - 财政年份:2022
- 资助金额:
$ 55.48万 - 项目类别:
Continuing Grant
CAREER: Oscillatory Integrals and Applications
职业:振荡积分和应用
- 批准号:
2143989 - 财政年份:2022
- 资助金额:
$ 55.48万 - 项目类别:
Continuing Grant
Exact WKB analysis for differential equations satisfied by oscillatory integrals
振荡积分满足的微分方程的精确 WKB 分析
- 批准号:
21K03300 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2055544 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Restriction Estimates and General Oscillatory Integrals
限制估计和一般振荡积分
- 批准号:
2207281 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2141426 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
Standard Grant
Computing Highly Oscillatory Integrals
计算高振荡积分
- 批准号:
565314-2021 - 财政年份:2021
- 资助金额:
$ 55.48万 - 项目类别:
University Undergraduate Student Research Awards
Computation of highly oscillatory molecular integrals
高振荡分子积分的计算
- 批准号:
554293-2020 - 财政年份:2020
- 资助金额:
$ 55.48万 - 项目类别:
University Undergraduate Student Research Awards
Numerical Integration of Oscillatory Integrals and Application
振荡积分的数值积分及应用
- 批准号:
554756-2020 - 财政年份:2020
- 资助金额:
$ 55.48万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




