CAREER: Oscillatory Integrals and the Geometry of Projections

职业:振荡积分和投影几何

基本信息

  • 批准号:
    2238818
  • 负责人:
  • 金额:
    $ 55.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

This project involves research at the interface of Fourier analysis and geometric measure theory. Fourier analysis studies the relation between a function and its Fourier transform. The Fourier transform of a function, in rough terms, represents the function via a superposition of frequencies. Geometric measure theory studies the geometric properties of sets and measures under transformations. Fractal sets, or sets with highly irregular geometry, are of particular interest in this regard. Recently, the connection between Fourier analysis and geometric measure theory has led to substantial progress in both fields. This project explores the interaction between these two fields, along with possible applications to other fields such as dynamics and number theory. The project also supports workshops for graduate students and early-career mathematicians: these events will promote mathematical expertise within the indicated research areas, will contribute to the professional training of participants, and will foster new research collaborations.The project combines work in restriction theory (within Fourier analysis) and the theory of projections (within geometric measure theory). One component of the planned research involves the study of the mass of a function, with Fourier transform supported on the sphere, on a fractal set. Another component investigates the dimensions of fractal sets under certain linear or nonlinear maps parametrized by curved manifolds. A final component concerns the Kakeya conjecture, which asks how large must a set be if it contains a unit line segment in every direction. These three components, while distinct, are highly interrelated, and progress in each area is anticipated to inform ongoing work in all of these areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画主要研究傅立叶分析与几何量测理论之介面。傅里叶分析研究函数和它的傅里叶变换之间的关系。函数的傅里叶变换,粗略地说,通过频率的叠加来表示函数。几何测度论研究集合和测度在变换下的几何性质。分形集,或具有高度不规则几何形状的集,在这方面特别令人感兴趣。最近,傅立叶分析和几何测度理论之间的联系导致了这两个领域的实质性进展。这个项目探讨了这两个领域之间的相互作用,沿着可能应用于其他领域,如动力学和数论。该项目还支持研究生和早期职业数学家的研讨会:这些活动将促进指定研究领域的数学专业知识,将有助于参与者的专业培训,并将促进新的研究合作。该项目结合了限制理论(傅立叶分析)和投影理论(几何测量理论)的工作。计划研究的一个组成部分涉及研究一个函数的质量,在球体上支持傅立叶变换,在分形集上。 另一部分研究了在某些线性或非线性映射下,由弯曲流形参数化的分形集的维数。最后一个部分涉及Kakeya猜想,它询问如果一个集合在每个方向上都包含一个单位线段,那么它必须有多大。这三个组成部分,虽然不同,是高度相互关联的,并在每个领域的进展预计将通知正在进行的工作在所有这些领域。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong Wang其他文献

Uplink Performance Analysis in Multi-tier Heterogeneous Cellular Networks with Power Control and Biased User Association
具有功率控制和偏置用户关联的多层异构蜂窝网络中的上行链路性能分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Han Hu;Hong Wang;Qi Zhu;Ziyu Pan
  • 通讯作者:
    Ziyu Pan
On STAR-RIS-Aided NOMA With Multi-Group Detection
具有多组检测的 STAR-RIS 辅助 NOMA
  • DOI:
    10.1109/lwc.2023.3303414
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Shen Fu;Hong Wang;Haitao Zhao;Haochun Ma
  • 通讯作者:
    Haochun Ma
Control of networked traffic flow distribution: a stochastic distribution system perspective
网络流量分配的控制:随机分配系统的角度
Composite robust H1 control for uncertain stochastic nonlinear systems with state delay via disturbance observer
基于扰动观测器的状态延迟不确定随机非线性系统的复合鲁棒H1控制
A Novel Optical See-Through Head-Mounted Display with Occlusion and Intensity Matching Support
具有遮挡和强度匹配支持的新型光学透视头戴式显示器

Hong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong Wang', 18)}}的其他基金

CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2055544
  • 财政年份:
    2021
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2141426
  • 财政年份:
    2021
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Variable-Order Fractional Partial Differential Equations: Computation, Analysis, and Application
变阶分数阶偏微分方程:计算、分析与应用
  • 批准号:
    2012291
  • 财政年份:
    2020
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Cooperative Enamine-Hard Metal Lewis Acid Catalysis for New Asymmetric Organic Transformations
烯胺-硬金属路易斯酸协同催化新的不对称有机转化
  • 批准号:
    1954422
  • 财政年份:
    2020
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Continuing Grant
CAS: Near-IR Absorbing Intramolecular Charge Transfer Complexes: Syntheses, Symmetry-Breaking Charge Transfer, and Charge Transfer Reversal by External Stimuli
CAS:近红外吸收分子内电荷转移复合物:合成、对称破坏电荷转移和外部刺激引起的电荷转移逆转
  • 批准号:
    2000988
  • 财政年份:
    2020
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
NSF Career: Enamine-Metal Lewis Acid Bifunctional Catalysts for Asymmetric Organic Transformations
NSF 职业:用于不对称有机转化的烯胺-金属路易斯酸双功能催化剂
  • 批准号:
    1664708
  • 财政年份:
    2016
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Continuing Grant
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
  • 批准号:
    1620194
  • 财政年份:
    2016
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Development and analysis of fast numerical methods for fractional diffusion and advection-diffusion equations
分数扩散和平流扩散方程快速数值方法的开发和分析
  • 批准号:
    1216923
  • 财政年份:
    2012
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant

相似海外基金

Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2424015
  • 财政年份:
    2024
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振​​荡积分
  • 批准号:
    2200470
  • 财政年份:
    2022
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Continuing Grant
CAREER: Oscillatory Integrals and Applications
职业:振荡积分和应用
  • 批准号:
    2143989
  • 财政年份:
    2022
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Continuing Grant
Exact WKB analysis for differential equations satisfied by oscillatory integrals
振荡积分满足的微分方程的精确 WKB 分析
  • 批准号:
    21K03300
  • 财政年份:
    2021
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2055544
  • 财政年份:
    2021
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Restriction Estimates and General Oscillatory Integrals
限制估计和一般振荡积分
  • 批准号:
    2207281
  • 财政年份:
    2021
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
  • 批准号:
    2141426
  • 财政年份:
    2021
  • 资助金额:
    $ 55.48万
  • 项目类别:
    Standard Grant
Computing Highly Oscillatory Integrals
计算高振荡积分
  • 批准号:
    565314-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 55.48万
  • 项目类别:
    University Undergraduate Student Research Awards
Computation of highly oscillatory molecular integrals
高振荡分子积分的计算
  • 批准号:
    554293-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 55.48万
  • 项目类别:
    University Undergraduate Student Research Awards
Numerical Integration of Oscillatory Integrals and Application
振荡积分的数值积分及应用
  • 批准号:
    554756-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 55.48万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了