Collaborative Research: SaTC: CORE: Small: Securing Recommender Systems against Data Poisoning Attacks

协作研究:SaTC:核心:小型:保护推荐系统免受数据中毒攻击

基本信息

  • 批准号:
    2125958
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to build secure recommender systems against data poisoning attacks. Recommender systems are common online, suggesting movies, products, news, and many other kinds of items in order to help people find things they are interested in and make decisions. The influence recommender systems have on people's behavior, however, makes them attractive targets: attackers can create fake users who rate items in ways that lead the system to recommend products that are more in the attackers' interests than the users'. These "data poisoning" attacks threaten the integrity of recommender systems, harming both the companies and people that use them. This proposal will develop methods to detect, limit, and recover from the damage of data poisoning attacks, making recommender systems more resistant to manipulation by bad actors and thus more trustable and useful; the methods will also be incorporated into students' coursework and research work, training a next generation of computer scientists to build more robust machine learning systems.The project is structured around three main aims. Task 1 involves systematically investigating the security vulnerabilities of recommender systems against data poisoning attacks where attackers have varying levels of knowledge about the algorithms and datasets. In task 2 the team will develop new recommendation algorithms that provably prevent data poisoning attacks, i.e., a bounded number of fake users provably cannot affect the system's performance no matter how the fake users craft their rating scores. Task 3 is to develop methods to detect the fake users in data poisoning attacks with provable guarantees and efficiently recover a recommender system from data poisoning attacks. The project will provide research opportunities for students with backgrounds that are traditionally underrepresented in computing, and the work will be incorporated into courses at Duke University and West Virginia University and disseminated widely.This project is jointly funded by Secure and Trustworthy Computing (SaTC) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是建立针对数据中毒攻击的安全建议系统。 推荐系统在线很常见,建议电影,产品,新闻和许多其他类型的物品,以帮助人们找到他们感兴趣的东西并做出决定。 但是,推荐系统对人们行为的影响使它们成为有吸引力的目标:攻击者可以创建虚假的用户,这些用户会以导致系统推荐攻击者利益的产品的方式对项目进行评分,而不是用户。 这些“数据中毒”攻击威胁着推荐系统的完整性,损害了使用它们的公司和人员。 该提案将开发出检测,限制和从数据中毒攻击损害中恢复的方法,从而使推荐系统对不良演员的操纵更具抵抗力,从而更加可信赖和有用;这些方法还将被纳入学生的课程和研究工作中,培训下一代计算机科学家以建立更强大的机器学习系统。该项目围绕三个主要目标进行了结构。 任务1涉及系统地研究推荐系统的安全漏洞,以防止攻击者对算法和数据集具有不同水平的数据中毒攻击。在任务2中,团队将开发新的推荐算法,这些算法可防止数据中毒攻击,即,无论伪造用户如何制作其评级分数,证明有界数的伪造用户都不会影响系统的性能。任务3是开发使用可证明的保证的数据中毒攻击中的假用户的方法,并有效地从数据中毒攻击中恢复了推荐系统。该项目将为具有传统背景的学生提供研究机会,这些背景在计算方面不足,并且该工作将被纳入杜克大学和西弗吉尼亚大学的课程中,并广泛进行分散。该项目由安全且可信赖的计算(SATC)共同资助,并通过既定的计划(EPSCOR)进行了支持,并促进了统计的奖励(EPSCOR)。基金会的智力优点和更广泛的影响评论标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contrastive Learning of Temporal Distinctiveness for Survival Analysis in Electronic Health Records
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Liu其他文献

A Novel Animal Model for Pulmonary Hypertension: Lung Endothelial-Specific Deletion of Egln1 in Mice
肺动脉高压的新动物模型:小鼠肺内皮特异性 Egln1 缺失
  • DOI:
    10.35534/jrbtm.2024.10007
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin Liu;D. Yi;Xiaokuang Ma;K. Ramirez;Hanqiu Zhao;Xiaomei Xia;Michael B. Fallon;Vladimir V. Kalinichenko;Shenfeng Qiu;Zhiyu Dai
  • 通讯作者:
    Zhiyu Dai
Suppression of high-frequency disturbance to satellite by Vernier-gimballing magnetically suspended flywheel
游标万向磁悬浮飞轮对卫星高频扰动的抑制
Experimental Study of Enhanced Boiling Heat Transfer with Suction
吸力强化沸腾传热实验研究
  • DOI:
    10.1007/s12217-021-09880-w
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yonghai Zhang;Wanbo Liu;Bin Liu;Xintong Yu;Jinjia Wei
  • 通讯作者:
    Jinjia Wei
Long-Period Fiber Grating based on Side-Polished Optical Fiber and Its Sensing Application
基于侧面抛光光纤的长周期光纤光栅及其传感应用
First Report of Leaf Blight Caused by Nigrospora oryzae on Poplar in China
我国首次报道米黑孢菌引起的杨树叶枯病
  • DOI:
    10.1094/pdis-05-21-1077-pdn
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Huifang Zhang;Ning Kong;Shida Ji;Bin Liu;Zhen Tian;Jinyu Qi;Zhihua Liu
  • 通讯作者:
    Zhihua Liu

Bin Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Liu', 18)}}的其他基金

CAREER: Symmetry-based microfluidics and perturbation-free micromanipulations of swimming microorganisms
职业:基于对称性的微流体和游动微生物的无扰动显微操作
  • 批准号:
    2046822
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Shape, wobble, and roll: adaptation of bacterial morphology to mechanical environments
形状、摆动和滚动:细菌形态对机械环境的适应
  • 批准号:
    1706511
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了