EAGER: Improving the Data Quality of Measurements Collected with Drone-Mounted Sensors: A Fluid Dynamics Perspective with Guidelines for Optimum Sensor Placement and Housing
EAGER:提高无人机安装传感器收集的测量数据质量:流体动力学视角以及最佳传感器放置和外壳指南
基本信息
- 批准号:2125997
- 负责人:
- 金额:$ 17.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Drones are routinely used to conduct measurements in the atmosphere and other difficult to access locations such as tunnels and large pipes. They can be used to measure air pollution, smoke, contaminants, etc. However, recent experimental data shows that measurements using drones can be compromised by the complex air flow created by the drone as well as the design of the sensor housing. For example, a recent study showed a nearly 100% overestimation of particle concentrations due to a drone’s induced rotors. This project aims to understand how drone airflow affects sensor measurements and to develop mitigation strategies for ideal sensor placement and design. The outcomes and products of this research will affect numerous sub-disciplines including environmental engineering, forest service, fire monitoring, contaminant tracking, agriculture, etc. that use drones for observation, measurement, and intervention. The overarching objective of this project is to characterize the mixing induced by drone airflow and its impact on on-board sensor measurements. The work will use computational fluid dynamics (CFD) and wind tunnel and open-air experiments to characterize the airflow around drones and its effects on sensor measurements of suspended particulates. Quadrotor and hexarotor drones will be considered in this work as those are the most commonly used types of drones to conduct airborne measurements. CFD calculations using Large Eddy Simulation will first be conducted to simulate different sampling scenarios such as across and into a plume as well as confined and well-mixed environments. Particles will be represented as scalar tracers because of their very low Stokes number. In addition, the work will consider sensor housing and orientation to quantify its impact on the final measurements. Experimental measurements will then be conducted to validate the CFD proposed guidelines. This research will enhance our fundamental understanding of the interaction between the airflow created by a drone and measurements of suspended particulate matter and gases. The research will introduce innovative tools for better understanding of drone-based sampling as well as guidelines for ideal sensor placement on the fuselage and sensor housing design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无人机通常用于在大气层和其他难以进入的位置(如隧道和大型管道)进行测量。它们可用于测量空气污染、烟雾、污染物等。然而,最近的实验数据表明,使用无人机进行测量可能会受到无人机产生的复杂气流以及传感器外壳设计的影响。例如,最近的一项研究表明,由于无人机的诱导转子,颗粒浓度被高估了近100%。该项目旨在了解无人机气流如何影响传感器测量,并为理想的传感器放置和设计制定缓解策略。这项研究的成果和产品将影响许多子学科,包括环境工程,森林服务,火灾监测,污染物跟踪,农业等,这些学科使用无人机进行观察,测量和干预。 该项目的首要目标是表征无人机气流引起的混合及其对机载传感器测量的影响。这项工作将使用计算流体动力学(CFD)、风洞和露天实验来表征无人机周围的气流及其对悬浮颗粒物传感器测量的影响。在这项工作中将考虑四旋翼和六旋翼无人机,因为它们是进行空中测量最常用的无人机类型。首先将使用大涡模拟进行计算流体动力学计算,以模拟不同的采样情况,例如穿过和进入羽流以及封闭和混合良好的环境。粒子将被表示为标量示踪剂,因为它们的斯托克斯数非常低。此外,这项工作将考虑传感器外壳和方向,以量化其对最终测量的影响。然后将进行实验测量,以验证CFD建议的指南。这项研究将增强我们对无人机产生的气流与悬浮颗粒物和气体测量之间相互作用的基本理解。该研究将引入创新工具,以更好地了解无人机采样以及机身上理想传感器放置和传感器外壳设计的指导方针。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating Errors Observed during UAV-Based Vertical Measurements Using Computational Fluid Dynamics
- DOI:10.3390/drones6090253
- 发表时间:2022-09-01
- 期刊:
- 影响因子:4.8
- 作者:Hedworth, Hayden;Page, Jeffrey;Saad, Tony
- 通讯作者:Saad, Tony
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Saad其他文献
On the theory of fast projection methods for high-order Navier-Stokes solvers
高阶Navier-Stokes求解器的快速投影方法理论
- DOI:
10.1016/j.jcp.2023.112557 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mokbel Karam;Tony Saad - 通讯作者:
Tony Saad
On the use of fast projection methods with unsteady velocity boundary conditions
- DOI:
10.1016/j.jcp.2024.113529 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Maher Eid;Mokbel Karam;Tony Saad - 通讯作者:
Tony Saad
High-order pressure estimates for Navier-Stokes Runge-Kutta solvers using stage pseudo-pressures
- DOI:
10.1016/j.jcp.2022.111602 - 发表时间:
2022-12-15 - 期刊:
- 影响因子:
- 作者:
Mokbel Karam;Tony Saad - 通讯作者:
Tony Saad
Automatic Halo Management for the Uintah GPU-Heterogeneous Asynchronous Many-Task Runtime
- DOI:
10.1007/s10766-018-0619-1 - 发表时间:
2018-12-07 - 期刊:
- 影响因子:0.900
- 作者:
Brad Peterson;Alan Humphrey;Dan Sunderland;James Sutherland;Tony Saad;Harish Dasari;Martin Berzins - 通讯作者:
Martin Berzins
Tony Saad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Saad', 18)}}的其他基金
EAGER: Fast High-Accuracy Navier-Stokes Solvers for Reacting Flow Simulations
EAGER:用于反应流模拟的快速高精度纳维斯托克斯求解器
- 批准号:
2225879 - 财政年份:2022
- 资助金额:
$ 17.45万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cens-able - Improving and empowering census data research opportunities in Scotland
Cens-able - 改善和增强苏格兰的人口普查数据研究机会
- 批准号:
ES/Z502881/1 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Research Grant
Improving outcomes for children exposed to opioids in pregnancy across the world: an international longitudinal administrative data study
改善世界各地妊娠期间接触阿片类药物的儿童的结局:一项国际纵向管理数据研究
- 批准号:
MR/X035638/1 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Fellowship
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
- 批准号:
10096804 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Collaborative R&D
OAC Core: Improving Data Integrity for HPC Datasets using Sparsity Profile
OAC 核心:使用稀疏性配置文件提高 HPC 数据集的数据完整性
- 批准号:
2312982 - 财政年份:2023
- 资助金额:
$ 17.45万 - 项目类别:
Standard Grant
Broadening Participation Research Project: Investigating the Efficacy of Data Science for Environmental Justice based PBL Modules for Improving Diversity in Environmental Science
扩大参与研究项目:调查数据科学对环境正义的有效性,基于 PBL 模块以提高环境科学的多样性
- 批准号:
2306658 - 财政年份:2023
- 资助金额:
$ 17.45万 - 项目类别:
Standard Grant
NESP MaC Project 3.6 - Improving data on the distribution and ecological value of temperate subtidal seagrass in tayaritja (Furneaux Group of Islands), Tasmania
NESP MaC 项目 3.6 - 改善塔斯马尼亚塔亚里贾(弗诺群岛)温带潮下海草分布和生态价值的数据
- 批准号:
global : 436e10ed-3322-494c-93a3-3bdf3405c045 - 财政年份:2023
- 资助金额:
$ 17.45万 - 项目类别:
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 17.45万 - 项目类别:
Collaborative R&D
All for data, data for all: Improving accessibility of healthcare data through a co-designed augmentation of an existing online rehabilitation application.
一切为了数据,数据为所有人:通过共同设计的现有在线康复应用程序的增强功能,提高医疗保健数据的可访问性。
- 批准号:
10054277 - 财政年份:2023
- 资助金额:
$ 17.45万 - 项目类别:
Grant for R&D
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
- 批准号:
2311582 - 财政年份:2023
- 资助金额:
$ 17.45万 - 项目类别:
Standard Grant
Improving Information Geometry of Markov Chains for Data-Science
改进数据科学马尔可夫链的信息几何
- 批准号:
23K13024 - 财政年份:2023
- 资助金额:
$ 17.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists