Annihilators and kernels in Kato's cohomology in positive characteristic and in Witt groups in characteristic 2

正特征中的加藤上同调和特征 2 中的维特群中的湮灭子和核

基本信息

项目摘要

Groups, rings and fields are fundamental objects in algebra. Groups are objects consisting of elements that can be combined using a group operation to form new elements according to strict rules. The rotations of a cube in space or the integers together with the usual addition form a group. Rings consist of elements that form a group under an addition, but that can also be multiplied with each other, with the interaction of addition and multiplication being governed by certain rules. E.g., the integers with usual addition and multiplication form a ring. Fields are rings in which multiplication has particularly nice properties, e.g. there always exists the reciprocal of a nonzero element. Examples of fields are the rational and the real numbers. Algebraists are often interested in objects defined over rings or fields, such as equations given by a polynomial in one or more variables with coefficients in a ring or field. Such equations may be transformed according to certain rules, and a natural question is to decide when an equation can be transformed into another, i.e. when two equations are "equivalent". To do so, one tries to find certain invariants that equivalent equations share and these invariants can in turn be elements in a group or ring. Quadratic forms can be considered as polynomial equations of degree 2 in several variables and they have been studied extensively for centuries. An important result in their classification is the proof of the co-called Milnor conjectures by Voevodsky (Fields medal in 2002 for this and related work), where quadratic forms are related to so-called Galois cohomology groups and Milnor K-groups in the case of fields where 2 is different from 0. Analogous results for fields with 2 equal to 0 have been obtained by Kazuya Kato in the 1980s where he used what we call the Kato cohomology groups. These are important in the study of fields in which a prime number p equals 0 and they have many applications, e.g. in number theory (class field theory). To gain a better understanding of these important groups, we plan to study two questions: 1. Given an element in Kato cohomology, which elements in Kato cohomology become zero when multiplied by that given element, i.e. we want to determine the "annihilator" of that given element. 2. Which elements in Kato cohomology become zero when passing from a field to a bigger field, i.e. we want to determine the "kernel of the restriction map" for that field extension. We also want to study analogous questions for the Witt groups of fields in which 2 equals 0. These Witt groups essentially classify quadratic (resp. bilinear) forms over such fields and by Kato's results, the questions for Witt groups are intimately linked to those for Kato's cohomology.
群、环和域是代数中的基本对象。组是由元素组成的对象,可以使用组操作将这些元素组合在一起,以根据严格的规则形成新元素。立方体在空间中的旋转或整数加上通常的加法形成一个群。环由在加法下形成一个群的元素组成,但这些元素也可以彼此相乘,加法和乘法的相互作用受某些规则的支配。例如,用通常的加法和乘法运算的整数组成一个环。域是乘法具有特别好性质的环,例如,总是存在非零元素的倒数。域的例子是有理数和实数。代数学家通常对环或域上定义的对象感兴趣,例如由环或域中系数的一个或多个变量的多项式给出的方程。这样的方程可以根据一定的规则进行变换,一个自然的问题是决定一个方程何时可以变换成另一个方程,即两个方程何时“等价”。要做到这一点,人们试图找到等价方程共享的某些不变量,而这些不变量又可以是群或环中的元素。二次型可以被认为是多个变量的二次多项式,它们已经被广泛研究了几个世纪。在它们的分类中的一个重要结果是证明了Voevodsky的共同称为Milnor猜想(由于这项工作和相关工作在2002年获得了Fields勋章),其中二次型与所谓的Galois上同调群和Milnor K-群有关,在2不同于0的域的情况下。20世纪80年代,Kazuya Kato使用了我们所称的Kato上同调群,得到了2等于0的域的类似结果。它们在素数p等于0的域的研究中是重要的,并且它们有许多应用,例如在数论(类场论)中。为了更好地理解这些重要的群,我们计划研究两个问题:1.给定Kato上同调中的一个元素,当乘以该给定元素时,Kato上同调中的哪些元素为零,即我们要确定该给定元素的“零化子”。2.当从一个域转移到一个更大的域时,Kato上同调中的哪些元素变为零,即我们要确定那个域扩张的“限制映象的核”。我们还想研究2等于0的域的Witt群的类似问题。这些Witt组基本上分类为二次(分别为双线性)形式,根据Kato的结果,Witt群的问题与Kato上同调的问题密切相关。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Differential forms and bilinear forms under field extensions
域扩展下的微分形式和双线性形式
  • DOI:
    10.1016/j.jalgebra.2015.05.034
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    A. Dolphin;D.W. Hoffmann
  • 通讯作者:
    D.W. Hoffmann
Witt kernels and Brauer kernels for quartic extensions in characteristic two
用于特征二的四次扩展的 Witt 核和 Brauer 核
Witt kernels of quadratic forms for multiquadratic extensions in characteristic 2
特征 2 中多重二次扩展的二次形式 Witt 核
  • DOI:
    10.1090/proc/12651
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D.W. Hoffmann
  • 通讯作者:
    D.W. Hoffmann
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Detlev Hoffmann其他文献

Professor Dr. Detlev Hoffmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Detlev Hoffmann', 18)}}的其他基金

Quadratic forms, quadrics, sums of squares and Kato's cohomology in positive characteristic
二次形式、二次方程、平方和以及正特征的加藤上同调
  • 批准号:
    405463680
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334797
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
  • 批准号:
    2238486
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Taming the size, complexity and longevity of OS kernels via enhanced OS kernel extensions
职业:通过增强的操作系统内核扩展来控制操作系统内核的大小、复杂性和寿命
  • 批准号:
    2236966
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
On Optimal Transport-based Statistical Measures for Graph Structured Data and Applications
基于传输的最优图结构化数据统计方法及应用
  • 批准号:
    23K16939
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on the magnetic field evolution of solar flare kernels with high temporal cadence imaging system
高时间节奏成像系统研究太阳耀斑核磁场演化
  • 批准号:
    22K03687
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
University of Nottingham (The) and Quality Kernels Limited
诺丁汉大学 (The) 和 Quality Kernels Limited
  • 批准号:
    99436
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Knowledge Transfer Partnership
Neural Signature Kernels
神经签名内核
  • 批准号:
    2752070
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Learning Better Representations With Kernels
使用内核学习更好的表示
  • 批准号:
    RGPIN-2021-02974
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Explicit Formulas for Functorial Transfer Kernels
函数传递核的显式公式
  • 批准号:
    547477-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了