Making Sense: Simultaneous Sensor Configuration and Optimal Control for Autonomous Systems

有意义:自主系统的同步传感器配置和最优控制

基本信息

  • 批准号:
    2126818
  • 负责人:
  • 金额:
    $ 53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

This project will contribute new scientific knowledge for future autonomous systems in large-scale applications, including emergency response to adverse events such as natural disasters or industrial accidents. As an example, in a post-disaster scenario where many roads are flooded, it is important to determine viable evacuation routes to transport people to safer locations. It is desirable to automate this process as much as possible: merge information from various sources and quickly plan the safe route. A network of unmanned aerial vehicles can visually survey the extent of flooding and identify passable roads. Information about road conditions, downed power lines, and other environmental factors may also be gained from diverse sources such as traffic cameras or social media posts. The current science of autonomy is inadequate because information-gathering and planning are typically treated as two separate problems. By contrast, this project emphasizes simultaneous information-gathering and planning, namely, methods to identify and deploy the most relevant sources of information in the context of a specific planning objective. With this approach, optimal plans may be achieved significantly faster than is possible with current technology. Consequently, the outcomes of this research may enable faster responses to adverse events, which in turn may help reduce loss of life and damage to property and the environment.In new autonomous systems, sensors may be exteroceptive, multimodal, and configurable, e.g., parameters such as location and pan-tilt-zoom may be tuned. This research aims to close the loop between estimation and control by configuring sensors to collect data most relevant to an optimal control objective. This is a departure from the separation principle traditionally used in control design. With such an integrated approach, it is anticipated that the control objective can be achieved with less risk and significantly lower volumes of sensor data, in some cases orders of magnitude fewer measurements, compared to the traditional paradigm. The research combines new machine learning tools with control and estimation techniques to execute an iterative sensing and control algorithm. At each iteration, an optimal sensor configuration is achieved for a given control design by maximizing a context-relevant information gain metric, and an optimal control design is then determined from the data generated by the updated sensor configuration. The fixed point of these iterations is a near-optimal solution to the coupled problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为未来大规模应用中的自主系统提供新的科学知识,包括对自然灾害或工业事故等不利事件的应急反应。例如,在许多道路被洪水淹没的灾后情况下,确定可行的疏散路线将人们运送到更安全的地点非常重要。我们希望尽可能地自动化这个过程:合并来自各种来源的信息,并快速规划安全路线。无人驾驶飞行器网络可以直观地调查洪水的范围,并确定可通行的道路。有关道路状况、停电线路和其他环境因素的信息也可以从各种来源获得,例如交通摄像头或社交媒体帖子。目前的自治科学是不够的,因为信息收集和规划通常被视为两个独立的问题。相比之下,本项目强调同时进行信息收集和规划,即在具体规划目标范围内确定和部署最相关信息来源的方法。利用这种方法,可以比利用当前技术更快地实现最优计划。因此,这项研究的结果可能使人们能够对不良事件做出更快的反应,这反过来可能有助于减少生命损失以及对财产和环境的损害。在新的自主系统中,传感器可以是外感受性的、多模式的和可配置的,例如,可以调整诸如位置和摇摄-倾斜-缩放的参数。本研究旨在通过配置传感器来收集与最优控制目标最相关的数据,从而闭合估计和控制之间的回路。这与控制设计中传统使用的分离原则不同。通过这种集成方法,可以预期,与传统范例相比,控制目标可以以更小的风险和显著更低的传感器数据量来实现,在某些情况下,测量数量级更少。该研究将新的机器学习工具与控制和估计技术相结合,以执行迭代传感和控制算法。在每次迭代中,通过最大化上下文相关信息增益度量来实现给定控制设计的最优传感器配置,然后根据由更新的传感器配置生成的数据来确定最优控制设计。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupled Sensor Configuration and Path-Planning in Unknown Environments with Adaptive Cluster Analysis
  • DOI:
    10.23919/acc53348.2022.9867482
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chase St. Laurent;Raghvendra V. Cowlagi
  • 通讯作者:
    Chase St. Laurent;Raghvendra V. Cowlagi
Near-optimal task-driven sensor network configuration
近乎最优的任务驱动传感器网络配置
  • DOI:
    10.1016/j.automatica.2023.110966
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    St. Laurent, Chase;Cowlagi, Raghvendra V.
  • 通讯作者:
    Cowlagi, Raghvendra V.
Coupled Sensor Configuration and Path-Planning in a Multimodal Threat Field
多模式威胁场中的耦合传感器配置和路径规划
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raghvendra Cowlagi其他文献

Raghvendra Cowlagi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raghvendra Cowlagi', 18)}}的其他基金

CPS: Breakthrough: Selective Listening - Control for Connected Autonomous Vehicles in Data-Rich Environments
CPS:突破:选择性聆听 - 数据丰富环境中联网自动驾驶车辆的控制
  • 批准号:
    1646367
  • 财政年份:
    2017
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant

相似国自然基金

基于P-T-t-D-shear sense轨迹和数值模拟探讨羌塘中部冈玛错-拉雄错地区高压变质岩的折返机制
  • 批准号:
    42172259
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Creating a Path to Achieving Success and Sense of Belonging in Computer Science
创造一条在计算机科学领域取得成功和归属感的道路
  • 批准号:
    2322665
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Standard Grant
Motion Sense-free Cabin:自動走行時の快適性向上を目的とした搭乗者の移動感覚制御
无体感驾驶室:控制乘客运动感觉,提高自动驾驶舒适度
  • 批准号:
    24K02978
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
REGULATING THE FLOW: Uncovering How Roots Sense and Respond to Water Availability
调节流量:揭示根部如何感知和响应水的可用性
  • 批准号:
    BB/Z514482/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Fellowship
Using Virtual Reality to investigate the sense of self
使用虚拟现实研究自我意识
  • 批准号:
    ES/Y008316/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Fellowship
World Crime Fiction: Making Sense of a Global Genre
世界犯罪小说:理解全球类型
  • 批准号:
    DP240102250
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Discovery Projects
Discovering How Root Sense Hard Soils
探索根系如何感知硬土
  • 批准号:
    EP/Y036697/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Research Grant
Applying a complex systems perspective to investigate the relationship between choreography and agent-based modeling as tools for scientific sense-making
应用复杂系统的视角来研究编排和基于代理的建模之间的关系,作为科学意义构建的工具
  • 批准号:
    2418539
  • 财政年份:
    2024
  • 资助金额:
    $ 53万
  • 项目类别:
    Continuing Grant
Operation support for personal mobility considering the sense of agency based on the estimation of user's intention
基于用户意图估计的考虑代理感的个人移动操作支持
  • 批准号:
    23K11269
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the ''sensory domain'' of the carpenters of local builders and the aesthetic sense of consumers in Japan
日本本土建筑木匠的“感官领域”与消费者的审美意识研究
  • 批准号:
    23K04196
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Challenges to cognitive super-resolution techniques based on contextual bias for sense of "Unnatural"
基于“不自然”感的情境偏差对认知超分辨率技术的挑战
  • 批准号:
    23K18490
  • 财政年份:
    2023
  • 资助金额:
    $ 53万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了