Collaborative Research: SaTC: CORE: Small: Flanker: Automatically Detecting Lateral Movement in Organizations Using Heterogeneous Data and Graph Representation Learning

协作研究:SaTC:核心:小型:侧翼:使用异构数据和图表示学习自动检测组织中的横向运动

基本信息

  • 批准号:
    2127232
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

In modern cyberattacks, adversaries do not target single computer systems. Instead, they first set an initial foothold into a company's network and later amplify their breach by compromising additional assets, until they reach their final target inside an organization. This process of advancing computer breaches is known as lateral movement. Detecting lateral movement is challenging, because attackers can use multiple vectors for infection (e.g., phishing emails) and computer systems in a network present a large degree of diversity (e.g., workstations, network equipment). For this reason, no comprehensive system to effectively detect lateral movement is currently available. Yet, detecting and stopping computer breaches as soon as possible is critical to ensure the safety and the prosperity of U.S. corporations and citizens. The aim of this project is to fill this gap by developing Flanker, a system able to automatically detect lateral movement in the network of an organization. Unlike existing approaches, the goal of Flanker is to operate on a variety of data sources (e.g., data coming from network and applications) to be able to detect cyberattacks as they span different online services and computers across the organization.This project consists of four phases. In the first phase the investigators collect heterogeneous datasets from a variety of sources and develop techniques to clean them from noise and anonymize them to protect the identity of users. In the second phase this data is used to build a graph that represents network activity, and graph representation learning approaches are used to build a model for this network activity. In the third phase this model is used to automatically detect lateral movement attacks, by either applying anomaly detection or supervised learning techniques. Finally, the investigators develop visualization techniques to enable a security analyst to properly understand the detection results and adopt appropriate countermeasures against the attack.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代网络攻击中,对手不会以单个计算机系统为目标。相反,他们首先在公司网络中建立一个最初的立足点,然后通过破坏其他资产来扩大他们的破坏,直到他们到达组织内部的最终目标。这种推进计算机入侵的过程被称为横向移动。检测横向移动是具有挑战性的,因为攻击者可以使用多种感染媒介(例如,网络钓鱼电子邮件),并且网络中的计算机系统存在很大程度的多样性(例如,工作站,网络设备)。由于这个原因,目前还没有全面的系统可以有效地检测横向移动。然而,尽快发现并阻止计算机入侵对确保美国企业和公民的安全和繁荣至关重要。这个项目的目的是通过开发Flanker来填补这一空白,Flanker是一个能够自动检测组织网络中的横向移动的系统。与现有的方法不同,Flanker的目标是对各种数据源(例如,来自网络和应用程序的数据)进行操作,以便能够检测跨组织中不同在线服务和计算机的网络攻击。本项目分为四个阶段。在第一阶段,研究人员从各种来源收集异构数据集,并开发技术来清除噪声并将其匿名化以保护用户的身份。在第二阶段,使用这些数据构建表示网络活动的图,并使用图表示学习方法为该网络活动构建模型。在第三阶段,通过应用异常检测或监督学习技术,将该模型用于自动检测横向移动攻击。最后,调查人员开发可视化技术,使安全分析人员能够正确地理解检测结果并采取适当的对策来应对攻击。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FirmSolo: Enabling dynamic analysis of binary Linux-based IoT kernel modules
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ioannis Angelakopoulos;G. Stringhini;Manuel Egele
  • 通讯作者:
    Ioannis Angelakopoulos;G. Stringhini;Manuel Egele
Shedding Light on the Targeted Victim Profiles of Malicious Downloaders
Cerberus: Exploring Federated Prediction of Security Events
Finding MNEMON: Reviving Memories of Node Embeddings
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gianluca Stringhini其他文献

A Data Donation Approach for Youth Online Safety
青少年在线安全的数据捐赠方法
  • DOI:
    10.2139/ssrn.4627341
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Afsaneh Razi;Ashwaq Alsoubai;J. Park;Xavier V. Caddle;Shiza Ali;Seunghyun Kim;Gianluca Stringhini;Munmun De Choudhury;Pamela J. Wisniewski
  • 通讯作者:
    Pamela J. Wisniewski
Enabling Contextual Soft Moderation on Social Media through Contrastive Textual Deviation
通过对比文本偏差在社交媒体上实现上下文软审核
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pujan Paudel;Mohammad Hammas Saeed;Rebecca Auger;Chris Wells;Gianluca Stringhini
  • 通讯作者:
    Gianluca Stringhini
In the Press
在新闻界
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gianluca Stringhini
  • 通讯作者:
    Gianluca Stringhini
Edinburgh Research Explorer International comparison of bank fraud reimbursement: customer perceptions and contractual terms
爱丁堡研究探索者银行欺诈报销的国际比较:客户认知和合同条款
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ingolf Becker;Alice Hutchings;Ruba Abu;Ross Anderson;Nicholas Bohm;S. Murdoch;M. A. Sasse;Gianluca Stringhini
  • 通讯作者:
    Gianluca Stringhini
Enabling Privacy-preserving Multidimensional Network Telemetry with Autoencoders
使用自动编码器实现保护隐私的多维网络遥测

Gianluca Stringhini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gianluca Stringhini', 18)}}的其他基金

Collaborative Research: SaTC: TTP: Medium: iDRAMA.cloud: A Platform for Measuring and Understanding Information Manipulation
协作研究:SaTC:TTP:中:iDRAMA.cloud:测量和理解信息操纵的平台
  • 批准号:
    2247868
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Detecting Accounts Involved in Influence Campaigns on Social Media
协作研究:SaTC:核心:小型:检测参与社交媒体影响力活动的帐户
  • 批准号:
    2114407
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Towards Data-Driven Methods to Counter Online Aggression
职业:寻找数据驱动的方法来对抗网络攻击
  • 批准号:
    1942610
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Inferring the Purpose of Network Activities
推断网络活动的目的
  • 批准号:
    EP/N008448/1
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了