Collaborative Research: SaTC: CORE: Small: Flanker: Automatically Detecting Lateral Movement in Organizations Using Heterogeneous Data and Graph Representation Learning
协作研究:SaTC:核心:小型:侧翼:使用异构数据和图表示学习自动检测组织中的横向运动
基本信息
- 批准号:2127232
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In modern cyberattacks, adversaries do not target single computer systems. Instead, they first set an initial foothold into a company's network and later amplify their breach by compromising additional assets, until they reach their final target inside an organization. This process of advancing computer breaches is known as lateral movement. Detecting lateral movement is challenging, because attackers can use multiple vectors for infection (e.g., phishing emails) and computer systems in a network present a large degree of diversity (e.g., workstations, network equipment). For this reason, no comprehensive system to effectively detect lateral movement is currently available. Yet, detecting and stopping computer breaches as soon as possible is critical to ensure the safety and the prosperity of U.S. corporations and citizens. The aim of this project is to fill this gap by developing Flanker, a system able to automatically detect lateral movement in the network of an organization. Unlike existing approaches, the goal of Flanker is to operate on a variety of data sources (e.g., data coming from network and applications) to be able to detect cyberattacks as they span different online services and computers across the organization.This project consists of four phases. In the first phase the investigators collect heterogeneous datasets from a variety of sources and develop techniques to clean them from noise and anonymize them to protect the identity of users. In the second phase this data is used to build a graph that represents network activity, and graph representation learning approaches are used to build a model for this network activity. In the third phase this model is used to automatically detect lateral movement attacks, by either applying anomaly detection or supervised learning techniques. Finally, the investigators develop visualization techniques to enable a security analyst to properly understand the detection results and adopt appropriate countermeasures against the attack.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在现代的网络攻击中,对手并不针对单一计算机系统。 取而代之的是,他们首先将初始立足点设置为公司的网络,然后通过损害其他资产来扩大其违约,直到他们达到组织内部的最终目标。这种推进计算机漏洞的过程称为横向运动。检测横向运动是具有挑战性的,因为攻击者可以使用多个向量的感染(例如网络钓鱼电子邮件)和网络中的计算机系统具有很大程度的多样性(例如,工作站,网络设备)。因此,目前没有有效检测横向运动的全面系统。但是,尽快发现和停止计算机漏洞对于确保美国公司和公民的安全和繁荣至关重要。该项目的目的是通过开发侧翼来填补这一空白,该系统能够自动检测组织网络中的横向运动。与现有方法不同,侧翼的目标是在各种数据源(例如来自网络和应用程序的数据)上运行,以便能够检测到网络攻击,因为它们跨越了整个组织的不同在线服务和计算机。该项目构成了四个阶段。在第一阶段,研究人员从各种来源收集了异质数据集,并开发技术以清除噪声并匿名化以保护用户的身份。在第二阶段中,该数据用于构建代表网络活动的图,并使用图表表示方法来构建该网络活动的模型。在第三阶段,该模型用于通过应用异常检测或监督学习技术自动检测横向运动攻击。最后,研究人员开发了可视化技术,以使安全分析师能够正确理解检测结果并采取适当的对策,以反对袭击。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来获得支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FirmSolo: Enabling dynamic analysis of binary Linux-based IoT kernel modules
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ioannis Angelakopoulos;G. Stringhini;Manuel Egele
- 通讯作者:Ioannis Angelakopoulos;G. Stringhini;Manuel Egele
Shedding Light on the Targeted Victim Profiles of Malicious Downloaders
- DOI:10.1145/3538969.3544435
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:François Labrèche;Enrico Mariconti;G. Stringhini
- 通讯作者:François Labrèche;Enrico Mariconti;G. Stringhini
Cerberus: Exploring Federated Prediction of Security Events
- DOI:10.1145/3548606.3560580
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Mohammad Naseri;Yufei Han;Enrico Mariconti;Yun Shen;G. Stringhini;Emiliano De Cristofaro
- 通讯作者:Mohammad Naseri;Yufei Han;Enrico Mariconti;Yun Shen;G. Stringhini;Emiliano De Cristofaro
Finding MNEMON: Reviving Memories of Node Embeddings
- DOI:10.1145/3548606.3559358
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Yun Shen;Yufei Han;Zhikun Zhang;Min Chen;Tingyue Yu;Michael Backes;Yang Zhang;G. Stringhini
- 通讯作者:Yun Shen;Yufei Han;Zhikun Zhang;Min Chen;Tingyue Yu;Michael Backes;Yang Zhang;G. Stringhini
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianluca Stringhini其他文献
A Data Donation Approach for Youth Online Safety
青少年在线安全的数据捐赠方法
- DOI:
10.2139/ssrn.4627341 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Afsaneh Razi;Ashwaq Alsoubai;J. Park;Xavier V. Caddle;Shiza Ali;Seunghyun Kim;Gianluca Stringhini;Munmun De Choudhury;Pamela J. Wisniewski - 通讯作者:
Pamela J. Wisniewski
Enabling Contextual Soft Moderation on Social Media through Contrastive Textual Deviation
通过对比文本偏差在社交媒体上实现上下文软审核
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Pujan Paudel;Mohammad Hammas Saeed;Rebecca Auger;Chris Wells;Gianluca Stringhini - 通讯作者:
Gianluca Stringhini
Enabling Privacy-preserving Multidimensional Network Telemetry with Autoencoders
使用自动编码器实现保护隐私的多维网络遥测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yajie Zhou;Jason Li;Gianluca Stringhini;Ayse K. Coskun;Zaoxing Liu - 通讯作者:
Zaoxing Liu
Edinburgh Research Explorer International comparison of bank fraud reimbursement: customer perceptions and contractual terms
爱丁堡研究探索者银行欺诈报销的国际比较:客户认知和合同条款
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ingolf Becker;Alice Hutchings;Ruba Abu;Ross Anderson;Nicholas Bohm;S. Murdoch;M. A. Sasse;Gianluca Stringhini - 通讯作者:
Gianluca Stringhini
Gianluca Stringhini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianluca Stringhini', 18)}}的其他基金
Collaborative Research: SaTC: TTP: Medium: iDRAMA.cloud: A Platform for Measuring and Understanding Information Manipulation
协作研究:SaTC:TTP:中:iDRAMA.cloud:测量和理解信息操纵的平台
- 批准号:
2247868 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Detecting Accounts Involved in Influence Campaigns on Social Media
协作研究:SaTC:核心:小型:检测参与社交媒体影响力活动的帐户
- 批准号:
2114407 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Towards Data-Driven Methods to Counter Online Aggression
职业:寻找数据驱动的方法来对抗网络攻击
- 批准号:
1942610 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Inferring the Purpose of Network Activities
推断网络活动的目的
- 批准号:
EP/N008448/1 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Research Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant