CAREER: Towards Data-Driven Methods to Counter Online Aggression
职业:寻找数据驱动的方法来对抗网络攻击
基本信息
- 批准号:1942610
- 负责人:
- 金额:$ 54.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The rise of social media has enabled online aggression practices such as cyberbullying, harassment, and hate speech to reach an unprecedented scale. Some aggressors select their targets and coordinate on polarized online communities to organize attacks against their victims, inundating them with hateful or disturbing messages, videos, and images. These attacks can cause serious harm to their victims, forcing them to leave social media sites or even to contemplate self-harm. Despite the threat posed by online aggression, the problem has so far not received much attention by the computer security research community. Developing quantitative methods able to identify and mitigate such attacks is however of paramount importance to provide a safe online experience to all Internet users. This project aims to develop tools able to identify online aggression attacks in real time, allowing online services to take the appropriate countermeasures. In this project, the PI aims to achieve four research objectives. First, by leveraging annotation from crowdsourcing workers, this project aims to develop effective corroborating evidence of aggression incidents on social media. De-identified datasets will be released publicly and will help the research community at large to better understand the problem. Second, the PI will develop techniques based on machine learning to identify online accounts that partake in online aggression, and to automatically flag the hateful content that they post, allowing online services to quickly react to such attacks. Third, the project will develop predictive models to establish the likelihood for content that is posted online to receive hate in the future; online services will be able to use these models to proactively allocate moderation resources towards content that is considered at risk. Finally, the PI will investigate the advantages and disadvantages of different mitigation approaches for this problem, from suspending offending online accounts to disabling comments for particularly risky content. This project's educational activities will include an interdisciplinary module targeted at college students from non-technical backgrounds and a tutorial designed to provide high school students with a better understanding of cyberbullying attacks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交媒体的兴起使网络欺凌、骚扰和仇恨言论等网络攻击行为达到了前所未有的规模。一些侵略者选择目标,协调两极分化的在线社区,组织针对受害者的攻击,用令人憎恨或令人不安的信息、视频和图像淹没他们。这些攻击可能会给受害者造成严重伤害,迫使他们离开社交媒体网站,甚至考虑自我伤害。尽管网络攻击带来了威胁,但到目前为止,这个问题还没有得到计算机安全研究界的太多关注。然而,开发能够识别和减轻此类攻击的量化方法对于向所有互联网用户提供安全的在线体验至关重要。该项目旨在开发能够实时识别在线攻击攻击的工具,使在线服务能够采取适当的对策。在本项目中,PI旨在实现四个研究目标。首先,通过利用众包工作人员的注释,该项目旨在开发有效的确证社交媒体上的攻击事件的证据。取消识别的数据集将被公开发布,并将帮助整个研究界更好地了解这个问题。其次,PI将开发基于机器学习的技术,以识别参与在线攻击的在线账户,并自动标记他们发布的令人憎恨的内容,使在线服务能够对此类攻击做出快速反应。第三,该项目将开发预测模型,以确定发布在网上的内容在未来受到仇恨的可能性;在线服务将能够使用这些模型来主动将审核资源分配给被认为有风险的内容。最后,PI将调查针对这个问题的不同缓解方法的优缺点,从暂停违规在线账户到禁用对特别有风险的内容的评论。该项目的教育活动将包括针对非技术背景的大学生的跨学科模块和旨在为高中生更好地了解网络欺凌攻击的教程。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Longitudinal Study of the Gettr Social Network
Gettr 社交网络的纵向研究
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Paudel, Pujan;Blackburn, Jeremy;De Cristofaro, Emiliano;Zannettou, Savvas;Stringhini, Gianluca
- 通讯作者:Stringhini, Gianluca
Getting Meta: A Multimodal Approach for Detecting Unsafe Conversations within Instagram Direct Messages of Youth
- DOI:10.1145/3579608
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Shiza Ali;Afsaneh Razi;Seunghyun Kim;Ashwaq Alsoubai;Chen Ling;M. de Choudhury;P. Wisniewski;G. Stringhini
- 通讯作者:Shiza Ali;Afsaneh Razi;Seunghyun Kim;Ashwaq Alsoubai;Chen Ling;M. de Choudhury;P. Wisniewski;G. Stringhini
Proceedings of the AAAI International Conference on Web and Social Media (ICWSM)
AAAI 国际网络和社交媒体会议 (ICWSM) 会议记录
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Wang, Yuping;Tahmasbi, Fatemeh;Blackburn, Jeremy;Bradlyn, Barry;De Cristofaro, Emiliano;Magerman, David;Zannettou, Savvas;Stringhini, Gianluca
- 通讯作者:Stringhini, Gianluca
Non-Polar Opposites: Analyzing the Relationship Between Echo Chambers and Hostile Intergroup Interactions on Reddit
非极性对立:分析回声室与 Reddit 上敌对群体间互动之间的关系
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Efstratiou, A.;Blackburn, J.;Caulfield, T.;Stringhini, G.;Zannettou, S.;De Cristofaro, E.
- 通讯作者:De Cristofaro, E.
"I'm a Professor, which isn't usually a dangerous job": Internet-facilitated Harassment and Its Impact on Researchers
“我是一名教授,这通常不是一项危险的工作”:互联网引发的骚扰及其对研究人员的影响
- DOI:10.1145/3476082
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Doerfler, Periwinkle;Forte, Andrea;De Cristofaro, Emiliano;Stringhini, Gianluca;Blackburn, Jeremy;McCoy, Damon
- 通讯作者:McCoy, Damon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianluca Stringhini其他文献
A Data Donation Approach for Youth Online Safety
青少年在线安全的数据捐赠方法
- DOI:
10.2139/ssrn.4627341 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Afsaneh Razi;Ashwaq Alsoubai;J. Park;Xavier V. Caddle;Shiza Ali;Seunghyun Kim;Gianluca Stringhini;Munmun De Choudhury;Pamela J. Wisniewski - 通讯作者:
Pamela J. Wisniewski
Enabling Contextual Soft Moderation on Social Media through Contrastive Textual Deviation
通过对比文本偏差在社交媒体上实现上下文软审核
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Pujan Paudel;Mohammad Hammas Saeed;Rebecca Auger;Chris Wells;Gianluca Stringhini - 通讯作者:
Gianluca Stringhini
Enabling Privacy-preserving Multidimensional Network Telemetry with Autoencoders
使用自动编码器实现保护隐私的多维网络遥测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yajie Zhou;Jason Li;Gianluca Stringhini;Ayse K. Coskun;Zaoxing Liu - 通讯作者:
Zaoxing Liu
Edinburgh Research Explorer International comparison of bank fraud reimbursement: customer perceptions and contractual terms
爱丁堡研究探索者银行欺诈报销的国际比较:客户认知和合同条款
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ingolf Becker;Alice Hutchings;Ruba Abu;Ross Anderson;Nicholas Bohm;S. Murdoch;M. A. Sasse;Gianluca Stringhini - 通讯作者:
Gianluca Stringhini
Gianluca Stringhini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianluca Stringhini', 18)}}的其他基金
Collaborative Research: SaTC: TTP: Medium: iDRAMA.cloud: A Platform for Measuring and Understanding Information Manipulation
协作研究:SaTC:TTP:中:iDRAMA.cloud:测量和理解信息操纵的平台
- 批准号:
2247868 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Flanker: Automatically Detecting Lateral Movement in Organizations Using Heterogeneous Data and Graph Representation Learning
协作研究:SaTC:核心:小型:侧翼:使用异构数据和图表示学习自动检测组织中的横向运动
- 批准号:
2127232 - 财政年份:2021
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Detecting Accounts Involved in Influence Campaigns on Social Media
协作研究:SaTC:核心:小型:检测参与社交媒体影响力活动的帐户
- 批准号:
2114407 - 财政年份:2021
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
Inferring the Purpose of Network Activities
推断网络活动的目的
- 批准号:
EP/N008448/1 - 财政年份:2015
- 资助金额:
$ 54.93万 - 项目类别:
Research Grant
相似海外基金
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2408964 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
CAREER: Towards Data-Driven and Field-Validated Microgrid Modeling and Analysis Techniques
职业:迈向数据驱动和现场验证的微电网建模和分析技术
- 批准号:
2237886 - 财政年份:2023
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
CAREER: Towards the Next Generation of Data-Driven and Performance-Based Multiscale Procedures in Mining Geotechnics
职业生涯:迈向采矿岩土工程中的下一代数据驱动和基于性能的多尺度程序
- 批准号:
2145092 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
CAREER: Multi-scale Mechanical Behavior of Quantum Dot Nanocomposites: Towards Data-driven Automatic Discovery of High-performance Structures
职业:量子点纳米复合材料的多尺度机械行为:迈向数据驱动的高性能结构的自动发现
- 批准号:
2145604 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Standard Grant
CAREER: Towards Reliable Operating Systems through Scalable Control- and Data-Flow Analysis
职业:通过可扩展的控制和数据流分析实现可靠的操作系统
- 批准号:
2145888 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
CAREER: Towards attack-resilient cyber-physical smart grids: moving target defense for data integrity attack detection, identification and mitigation
职业:迈向抗攻击的网络物理智能电网:用于数据完整性攻击检测、识别和缓解的移动目标防御
- 批准号:
2146156 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
- 批准号:
2146191 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
CAREER: Modeling Group Human-Robot Interactions: Towards A Unified Data-Driven Perspective
职业:对群体人机交互进行建模:迈向统一的数据驱动视角
- 批准号:
2143109 - 财政年份:2022
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
CAREER: Towards a Data-driven Understanding of Online Sentiment
职业:以数据驱动的方式理解网络情绪
- 批准号:
2046590 - 财政年份:2021
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant
CAREER: Towards Exploratory Data Science on Spatio-temporal Big Data
职业:走向时空大数据的探索性数据科学
- 批准号:
2046236 - 财政年份:2021
- 资助金额:
$ 54.93万 - 项目类别:
Continuing Grant