Collaborative Research: CPS: Medium: RUI: Cooperative AI Inferencein Vehicular Edge Networks for Advanced Driver-Assistance Systems
协作研究:CPS:中:RUI:用于高级驾驶员辅助系统的车辆边缘网络中的协作人工智能推理
基本信息
- 批准号:2128350
- 负责人:
- 金额:$ 29.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence (AI) has shown superior performance in enhancing driving safety in advanced driver-assistance systems (ADAS). State-of-the-art deep neural networks (DNNs) achieve high accuracy at the expense of increased model complexity, which raises the computation burden of onboard processing units of vehicles for ADAS inference tasks. The primary goal of this project is to develop innovative collaborative AI inference strategies with the emerging edge computing paradigm. The strategies can adaptively adjust cooperative inference techniques for best utilizing available computation and communication resources and ultimately enable high-accuracy and real-time inference. The project will inspire greater collaborations between experts in wireless communication, edge computing, computer vision, autonomous driving testbed development, and automotive manufacturing, and facilitate AI applications in a variety of IoT systems. The educational testbed developed from this project can be integrated into courses to provide hands-on experiences. This project will benefit undergraduate, master, and Ph.D. programs and increase under-represented groups’ engagement by leveraging the existing diversity-related outreach efforts.A multi-disciplinary team with complementary expertise from Rowan University, Temple University, Stony Brook University, and Kettering University is assembled to pursue a coordinated study of collaborative AI inference. The PIs explore integrative research to enable deep learning technologies in resource-constrained ADAS for high-accuracy and real-time inference. Theory-wise, the PIs plan to take advantage of the observation that DNNs can be decomposed into a set of fine-grained components to allow distributed AI inference on both the vehicle and edge server sides for inference acceleration. Application-wise, the PIs plan to design novel DNN models which are optimized for the cooperative AI inference paradigm. Testbed-wise, a vehicle edge computing platform with V2X communication and edge computing capability will be developed at Kettering University GM Mobility Research Center. The cooperative AI inference system will be implemented, and the research findings will be validated on realistic vehicular edge computing environments thoroughly. The data, software, and educational testbeds developed from this project will be widely disseminated. Domain experts in autonomous driving testbed development, intelligent transportation systems, and automotive manufacturing will be engaged in project-related issues to ensure relevant challenges in this project are impactful for real-world applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)在提高高级驾驶辅助系统(ADAS)的驾驶安全性方面表现出了卓越的性能。目前最先进的深度神经网络(dnn)以增加模型复杂性为代价来实现高精度,这增加了车载处理单元用于ADAS推理任务的计算负担。该项目的主要目标是利用新兴的边缘计算范式开发创新的协作人工智能推理策略。该策略可以自适应调整协作推理技术,以最佳地利用可用的计算和通信资源,最终实现高精度和实时推理。该项目将激发无线通信、边缘计算、计算机视觉、自动驾驶试验台开发和汽车制造领域专家之间的更大合作,并促进人工智能在各种物联网系统中的应用。从该项目开发的教育测试平台可以集成到课程中,以提供实践经验。该项目将惠及本科生、硕士和博士项目,并通过利用现有的与多样性相关的外展工作,增加代表性不足的群体的参与。一个由罗文大学、天普大学、石溪大学和凯特林大学组成的多学科团队将进行协作人工智能推理的协调研究。pi探索综合研究,使深度学习技术在资源受限的ADAS中实现高精度和实时推理。从理论上讲,pi计划利用dnn可以分解为一组细粒度组件的观察结果,从而允许在车辆和边缘服务器端进行分布式AI推理,以进行推理加速。在应用方面,pi计划设计针对协作AI推理范式进行优化的新型深度神经网络模型。在测试平台方面,将在凯特林大学通用汽车移动研究中心开发具有V2X通信和边缘计算能力的车辆边缘计算平台。实现协同AI推理系统,并在现实的车载边缘计算环境中对研究成果进行全面验证。从这个项目开发的数据、软件和教育测试平台将被广泛传播。自动驾驶测试平台开发、智能交通系统和汽车制造领域的专家将参与项目相关问题,以确保项目中的相关挑战对实际应用产生影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transparent Object Tracking with Enhanced Fusion Module
- DOI:10.1109/iros55552.2023.10341597
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Kalyan Garigapati;Erik Blasch;Jie Wei;Haibin Ling
- 通讯作者:Kalyan Garigapati;Erik Blasch;Jie Wei;Haibin Ling
GTCaR: Graph Transformer for Camera Re-localization
- DOI:10.1007/978-3-031-20080-9_14
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Xinyi Li;Haibin Ling
- 通讯作者:Xinyi Li;Haibin Ling
ARCHIE++ : A Cloud-enabled Framework for Conducting AR System Testing in the Wild
ARCHIE:用于在野外进行 AR 系统测试的云支持框架
- DOI:10.1109/tvcg.2022.3141029
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Lehman, Sarah;Elezovikj, Semir;Ling, Haibin;Tan, Chiu
- 通讯作者:Tan, Chiu
Backdoor Cleansing with Unlabeled Data
- DOI:10.1109/cvpr52729.2023.01176
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Lu Pang;Tao Sun;Haibin Ling;Chao Chen
- 通讯作者:Lu Pang;Tao Sun;Haibin Ling;Chao Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haibin Ling其他文献
Robust Nighttime Vehicle Detection by Tracking and Grouping Headlights
通过跟踪和分组前灯进行稳健的夜间车辆检测
- DOI:
10.1109/tits.2015.2425229 - 发表时间:
2015-05 - 期刊:
- 影响因子:0
- 作者:
Haibin Ling;Siwei Luo;Yaping Huang;Mei Tian - 通讯作者:
Mei Tian
Expression of Rab1A in bladder cancer and its clinical implications
Rab1A在膀胱癌中的表达及其临床意义
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
H. Su;Ting Li;Chen Li;Xin Liu;Haibin Ling;Xiangdong Li - 通讯作者:
Xiangdong Li
Multi-View 3D Shape Recognition via Correspondence-Aware Deep Learning
通过对应感知深度学习进行多视图 3D 形状识别
- DOI:
10.1109/tip.2021.3082310 - 发表时间:
2021-05 - 期刊:
- 影响因子:10.6
- 作者:
Yong Xu;Chaoda Zheng;Ruotao Xu;Yuhui Quan;Haibin Ling - 通讯作者:
Haibin Ling
Title Learning pairwise gene functional similarity by multiplex gene expression maps
标题 通过多重基因表达图学习成对基因功能相似性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Haibin Ling;Z. Obradovic;Desmond J. Smith;V. Megalooikonomou - 通讯作者:
V. Megalooikonomou
Graph Matching with Adaptive and Branching Path Following
具有自适应和分支路径跟踪的图形匹配
- DOI:
10.1109/tpami.2017.2767591 - 发表时间:
2018-12 - 期刊:
- 影响因子:23.6
- 作者:
Tao Wang;Haibin Ling;Congyan Lang;Songhe Feng - 通讯作者:
Songhe Feng
Haibin Ling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haibin Ling', 18)}}的其他基金
RI:Small: Improve Visual Tracking by Large Scale Learning, Diagnosis, and Evaluation
RI:Small:通过大规模学习、诊断和评估改进视觉跟踪
- 批准号:
2006665 - 财政年份:2020
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
CAREER: High-order Tensor Analysis for Groupwise Correspondence: Theory, Algorithms, and Applications
职业:分组对应的高阶张量分析:理论、算法和应用
- 批准号:
2002434 - 财政年份:2019
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
SCH: EXP: Cost Efficient Osteoporosis Analysis using Dental Data
SCH:EXP:使用牙科数据进行成本效益的骨质疏松症分析
- 批准号:
1407156 - 财政年份:2014
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
CAREER: High-order Tensor Analysis for Groupwise Correspondence: Theory, Algorithms, and Applications
职业:分组对应的高阶张量分析:理论、算法和应用
- 批准号:
1350521 - 财政年份:2014
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Contour-Assisted Visual Inference: Systems, Algorithms, and Applications
RI:小型:协作研究:轮廓辅助视觉推理:系统、算法和应用
- 批准号:
1218156 - 财政年份:2012
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
EAGER: A New Framework for Balancing Deformability and Discriminability in Computer Vision
EAGER:平衡计算机视觉中的可变形性和可辨别性的新框架
- 批准号:
1049032 - 财政年份:2010
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420847 - 财政年份:2024
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
- 批准号:
2423130 - 财政年份:2024
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
Standard Grant