CAREER: A Trustworthy and Verifiable Software Backplane for the Cloud Edge
职业:值得信赖且可验证的云边缘软件背板
基本信息
- 批准号:2128725
- 负责人:
- 金额:$ 47.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Internet of things (IoT) produces a large influx of streaming data. The high cost and long latency in shipping raw IoT data necessitates edge processing. The objective of this project is to safeguard IoT data during edge processing. It seeks to establish a trusted data path on the edge. As the data flows through the path, the proposed edge system ensures 1) data confidentiality: IoT data is only accessible to trusted parties; 2) integrity: all the data having arrived at the edge is exactly manipulated according to the planned processing; 3) verifiability: data flows and computations on the edge are verifiable to a trusted cloud backend. The project's research thrusts will be tightly integrated with its education and outreach plan, educating students on trustworthy computing scenarios as well as stimulating the public's interests in science, technology, engineering, and math (STEM). There are plans to contribute fresh contents to curriculum; enhance student maker activities with in-situ IoT analytics; provide a summer course on IoT/Edge for local children; and, present relevant outreach at community IoT events. As IoT is revolutionizing modern society, the project aims toward more secure and efficient intelligence driven by IoT data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网(IoT)产生大量流数据。运输原始物联网数据的高成本和长延迟需要边缘处理。该项目的目标是在边缘处理期间保护物联网数据。它试图在边缘建立可信的数据路径。当数据流经路径时,所提出的边缘系统确保1)数据机密性:物联网数据仅可由受信任方访问; 2)完整性:所有到达边缘的数据都根据计划的处理进行精确操作; 3)可验证性:边缘上的数据流和计算可由受信任的云后端验证。该项目的研究重点将与其教育和推广计划紧密结合,教育学生了解可信的计算场景,并激发公众对科学,技术,工程和数学(STEM)的兴趣。计划为课程提供新的内容;通过现场物联网分析加强学生创客活动;为当地儿童提供物联网/边缘暑期课程;并在社区物联网活动中提供相关推广。随着物联网对现代社会的变革,该项目旨在通过物联网数据驱动实现更安全、更高效的智能。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient NLP Model Finetuning via Multistage Data Filtering
- DOI:10.24963/ijcai.2023/455
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Ouyang Xu;S. Ansari;F. Lin;Yangfeng Ji
- 通讯作者:Ouyang Xu;S. Ansari;F. Lin;Yangfeng Ji
STI: Turbocharge NLP Inference at the Edge via Elastic Pipelining
- DOI:10.1145/3575693.3575698
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Liwei Guo;Wonkyo Choe;F. Lin
- 通讯作者:Liwei Guo;Wonkyo Choe;F. Lin
Video Analytics with Zero-streaming Cameras
- DOI:
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Mengwei Xu;Tiantu Xu;Yunxin Liu;F. Lin
- 通讯作者:Mengwei Xu;Tiantu Xu;Yunxin Liu;F. Lin
Safe and Practical GPU Computation in TrustZone
- DOI:10.1145/3552326.3567483
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Heejin Park;F. Lin
- 通讯作者:Heejin Park;F. Lin
Towards Out-of-core Neural Networks on Microcontrollers
- DOI:10.1109/sec54971.2022.00008
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Hongyu Miao;F. Lin
- 通讯作者:Hongyu Miao;F. Lin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Felix Xiaozhu Lin其他文献
ShuffleDog: Characterizing and Adapting User-Perceived Latency of Android Apps
- DOI:
10.1109/TMC.2017.265182 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Gang Huang;Mengwei Xu;Felix Xiaozhu Lin;Yunxin Liu;Yun Ma;Saumay Pushp;Xuanzhe Liu - 通讯作者:
Xuanzhe Liu
Felix Xiaozhu Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Felix Xiaozhu Lin', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Understanding and Strengthening Memory Security for Non-Volatile Memory
合作研究:CNS 核心:中:理解和加强非易失性内存的内存安全性
- 批准号:
2106893 - 财政年份:2021
- 资助金额:
$ 47.97万 - 项目类别:
Continuing Grant
NSF Student Travel Grants for the Twentieth ACM Workshop on Mobile Computing Systems and Applications (ACM HotMobile 2019)
NSF 学生为第二十届 ACM 移动计算系统和应用研讨会 (ACM HotMobile 2019) 提供旅费补助
- 批准号:
1902722 - 财政年份:2019
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
CAREER: A Trustworthy and Verifiable Software Backplane for the Cloud Edge
职业:值得信赖且可验证的云边缘软件背板
- 批准号:
1846102 - 财政年份:2019
- 资助金额:
$ 47.97万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Collaborative: Guarding the Integrity of Mobile Graphical User Interfaces
SaTC:核心:小型:协作:保护移动图形用户界面的完整性
- 批准号:
1718702 - 财政年份:2017
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Efficient Exploitation of Heterogeneous Memory through OS/Compiler Support
CSR:小型:协作研究:通过操作系统/编译器支持有效利用异构内存
- 批准号:
1619075 - 财政年份:2016
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
CRII: CSR: Rethinking Operating System Structure for Wearable Devices
CRII:CSR:重新思考可穿戴设备的操作系统结构
- 批准号:
1464357 - 财政年份:2015
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
- 批准号:
2404952 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
- 批准号:
DE240101089 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
REU Site: Embracing Blockchain for a Secure and Trustworthy Tomorrow
REU 网站:拥抱区块链,打造安全可信的明天
- 批准号:
2349042 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
- 批准号:
24K20834 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Human-centric Digital Twin Approaches to Trustworthy AI and Robotics for Improved Working Conditions
以人为本的数字孪生方法,实现值得信赖的人工智能和机器人技术,以改善工作条件
- 批准号:
10109582 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
EU-Funded
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Research Grant
CAREER: Secure and Trustworthy Intent-Based Networking
职业:安全且值得信赖的基于意图的网络
- 批准号:
2339882 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Continuing Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411153 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
- 批准号:
2404950 - 财政年份:2024
- 资助金额:
$ 47.97万 - 项目类别:
Standard Grant