Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
基本信息
- 批准号:DE240101089
- 负责人:
- 金额:$ 30.28万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2024
- 资助国家:澳大利亚
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
It is urgent to develop a new hypothesis transfer learning scheme that can overcome potential risks when finetuning unreliable large-scale pre-trained models. This project aims to develop an advanced and reliable scheme of hypothesis transfer learning, called Trustworthy Hypothesis Transfer Learning (TrustHTL). A new theoretically guaranteed heterogeneous hypothesis transfer learning framework will be developed to handle heterogeneous situations; a methodology to disinherit risks of pre-trained models and a new fuzzy relation based distributional discrepancy in heterogeneous transfer learning scenarios. The outcomes should significantly improve the reliability of machine learning with benefits for safety learning in data analytics.
迫切需要开发一种新的假设迁移学习方案,以克服在微调不可靠的大规模预训练模型时的潜在风险。本项目旨在开发一种先进可靠的假设迁移学习方案,称为可信假设迁移学习(TrustHTL)。将开发一个新的理论上有保证的异构假设迁移学习框架来处理异构情况;一种方法来消除预训练模型的风险,以及一种新的基于模糊关系的异构迁移学习场景中的分布差异。这些结果将显著提高机器学习的可靠性,并有利于数据分析中的安全学习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr Feng Liu其他文献
Dr Feng Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331278 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
Understanding quantum resources through quantum hypothesis testing
通过量子假设检验了解量子资源
- 批准号:
24K16984 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331277 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
Developing and enabling efficient hypothesis test for response-adaptive design with patient benefit goals
开发并启用有效的假设检验,以实现具有患者利益目标的响应自适应设计
- 批准号:
MR/Z503538/1 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Research Grant
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331276 - 财政年份:2024
- 资助金额:
$ 30.28万 - 项目类别:
Standard Grant
New hypothesis for cause of the Middle Pleistocene Transition "Water Vapor Hypothesis"
中更新世过渡成因的新假说“水蒸气假说”
- 批准号:
22KJ0093 - 财政年份:2023
- 资助金额:
$ 30.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Testing a Memory-Based Hypothesis for Anhedonia
测试基于记忆的快感缺失假设
- 批准号:
10598974 - 财政年份:2023
- 资助金额:
$ 30.28万 - 项目类别:
Visual Analytics for Exploration and Hypothesis Generation Using Highly MultiplexedSpatial Data of Tissues and Tumors
使用组织和肿瘤的高度多重空间数据进行探索和假设生成的可视化分析
- 批准号:
10743329 - 财政年份:2023
- 资助金额:
$ 30.28万 - 项目类别:
Design features that prevent costly errors in cheater detection: hypothesis testing from the partner choice framework
防止作弊者检测中出现代价高昂错误的设计功能:合作伙伴选择框架的假设检验
- 批准号:
23K12863 - 财政年份:2023
- 资助金额:
$ 30.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigation of aggravating factors for pneumonia/aspiration pneumonia based on the hypothesis to delay the lung tissue repair
基于延迟肺组织修复假说的肺炎/吸入性肺炎加重因素调查
- 批准号:
22KJ1445 - 财政年份:2023
- 资助金额:
$ 30.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows