NSF-BSF:A genomic view of gene regulatory network co-option and morphological novelty

NSF-BSF:基因调控网络共选择和形态新颖性的基因组观点

基本信息

  • 批准号:
    2129903
  • 负责人:
  • 金额:
    $ 102.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

One of the greatest mysteries in biology is how the marvelous diversity of life on our planet originated. An important facet of this problem is that of anatomical novelty: how do new structures come into existence? This project will study how a newly evolved structure in the vinegar fly (Drosophila melanogaster) first arose. Work in the developmental biology field has traced how most anatomical structures are genetically encoded in the genome by genetic networks that control which subset of genes are expressed in a tissue as it develops. The problem of morphological novelty can be expressed in terms of these networks – how do the networks that underlie novelties originate? This has been an exceedingly difficult problem for the field to tackle in a satisfying way. Because these networks are complex, we will employ cutting edge genomic approaches to holistically inventory likely participants and pinpoint their relevant gene function-altering mutations. Combining such genomic descriptions with empirical follow-up using the powerful genetic toolkit of Drosophila will permit a deep examination of the molecular changes that occur as new structures evolve. Doing so will inform a wide variety of similar developmental and evolutionary processes in other organisms in which the tools for manipulation and rigorous validation are lacking. This project will have numerous additional broader impacts, including training of scientists, outreach activities for middle school and high school students from backgrounds underrepresented in science, and development of software tools and databases. The posterior lobe is a morphological novelty specific to Drosophila melanogaster clade. We have previously discovered that the posterior lobe emerged by co-option of a gene regulatory network from another organ system, the posterior spiracle which first forms during embryonic development. However, it is not known which genes upstream of this co-option event were modified and how they were modified. In addition, it is unclear how a similar gene regulatory network generates two completely different structures. These issues will be addressed by identifying altered changes in the network’s regulatory hierarchy and differences in its downstream cellular processes. This will be done by cell sorting with posterior-lobe and spiracle-specific cellular markers, followed by RNA-seq and ATAC-seq analyses. Follow-up studies will identify regulatory sequences responsible for species and context-specific gene expression. These will be validated by CRISPR/Cas9 gene editing, as well as comparative studies of transcriptional regulatory activity with reporter genes in both lobed and non-lobed species. Resources will also be established to test regulatory elements in the comparison species D. ananassae. Together, this research will establish a premiere system in which the genetic changes underlying a morphological novelty will have been traced and tested in vivo, a problem that has been difficult to unravel in any system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物学中最大的谜团之一是我们星球上奇妙多样的生命是如何起源的。这个问题的一个重要方面是解剖学上的新奇性:新的结构是如何形成的?这个项目将研究醋蝇(Drosophila melanogaster)中一种新进化的结构是如何首先出现的。发育生物学领域的工作已经追踪了大多数解剖结构是如何通过遗传网络在基因组中进行遗传编码的,遗传网络控制组织发育时哪些基因子集在组织中表达。形态新奇的问题可以用这些网络来表达--构成新颖性基础的网络是如何产生的?这是一个非常困难的问题,该领域以令人满意的方式解决。由于这些网络是复杂的,我们将采用尖端的基因组方法来全面盘点可能的参与者,并确定他们相关的基因功能改变突变。将这样的基因组描述与使用果蝇强大的遗传工具包的经验性后续行动相结合,将允许对新结构进化时发生的分子变化进行深入研究。这样做将为其他生物中各种各样的类似发育和进化过程提供信息,这些生物缺乏操纵和严格验证的工具。该项目将产生许多额外的更广泛的影响,包括培训科学家,为科学背景不足的初中和高中学生开展外联活动,以及开发软件工具和数据库。后叶是黑腹果蝇分支特有的形态学新新奇。我们先前已经发现,后叶是通过与另一个器官系统的基因调控网络的共同选择而出现的,后气门首先在胚胎发育期间形成。然而,目前还不知道该协同选择事件上游的哪些基因被修饰以及它们是如何被修饰的。此外,目前还不清楚类似的基因调控网络如何产生两种完全不同的结构。这些问题将通过识别网络的监管层次结构的变化和下游细胞过程的差异来解决。这将通过使用后叶和气门特异性细胞标记物进行细胞分选,然后进行RNA-seq和ATAC-seq分析来完成。后续研究将确定负责物种和环境特异性基因表达的调控序列。这些将通过CRISPR/Cas9基因编辑进行验证,以及在有叶和无叶物种中使用报告基因进行转录调控活性的比较研究。 还将建立资源以测试比较种属D中的调节元件。ananassae。总之,这项研究将建立一个首映系统,在该系统中,形态新奇背后的遗传变化将被追踪和体内测试,这是一个在任何系统中都难以解决的问题。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Rebeiz其他文献

An atlas of transcription factors expressed in the Drosophila melanogaster pupal terminalia
果蝇蛹终叶中表达的转录因子图谱
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ben J. Vincent;Gavin R. Rice;Gabriella Wong;William J. Glassford;Kayla I Downs;Jessica L. Shastay;Kenechukwu Charles;Malini Natarajan;Madelaine M. Gogol;J. Zeitlinger;Mark Rebeiz
  • 通讯作者:
    Mark Rebeiz
Expansion of apical extracellular matrix underlies the morphogenesis of a recently evolved structure
顶端细胞外基质的扩张是最近进化结构的形态发生的基础
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Smith;L. Davidson;Mark Rebeiz
  • 通讯作者:
    Mark Rebeiz
Porcine sperm surface β1,4Galactosyltransferase binds to the zona pellucida but is not necessary or sufficient to mediate sperm–zona pellucida binding
猪精子表面 β1,4 半乳糖基转移酶与透明带结合,但对于介导精子与透明带结合不是必要或充分的
On the individuality of gene regulatory networks: how does network re-use affect subsequent evolution?
关于基因调控网络的个性:网络重用如何影响后续进化?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eden W McQueen;Mark Rebeiz
  • 通讯作者:
    Mark Rebeiz
The evolutionary origination of a novel expression pattern through an extreme heterochronic shift
通过极端的异时性转变,新的表达模式的进化起源
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Thomas Pham;Stephanie Day;William J. Glassford;Thomas M. Williams;Mark Rebeiz
  • 通讯作者:
    Mark Rebeiz

Mark Rebeiz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Rebeiz', 18)}}的其他基金

Collaborative Research: The structure, function, and evolution of a regulatory network controlling sexually dimorphic fruit fly development
合作研究:控制性二态性果蝇发育的调控网络的结构、功能和进化
  • 批准号:
    1145947
  • 财政年份:
    2012
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 102.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了