Building reconfigurable photonic materials and devices by light-guided self-assembly of nanoparticles

通过纳米粒子的光导自组装构建可重构光子材料和器件

基本信息

  • 批准号:
    2131079
  • 负责人:
  • 金额:
    $ 45.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical DescriptionAn attractive prospect of nanoscience is the ability to build novel electronic and photonic materials with nanoscale building blocks. Chemically synthesized nanoparticles with well-controlled size and shape allow one to tailor the properties of a material or structure. Being able to reassemble nanoparticles into new shapes will allow scientists and engineers to build multifunctional materials that can respond to stimuli. Reconfigurable assembly is common in living systems but still rare in artificial nanomaterials. For example, the lens of an eye changes to adjust focus or the iris contracts in the presence of bright light. However, current approaches for the assembly of nanoparticles mostly lead to structures with fixed size and shape. This project addresses this need by using light to assemble nanoparticles into reconfigurable shapes in a controlled manner. This will be achieved by shaping a laser beam into structured optical fields and studying interactions with nanoparticles. The research team will measure the optical, electronic, and mechanical properties of nanoparticle arrays, aiming to demonstrate new applications such as light-driven nanomotors and biosensors. The project will also enable a new remote-access education platform named “iPhotons”, an internet-accessible Platform for Holographic Optical Tweezers and Optical Nanomaterial Simulations. The iPhotons platform resembles the research system, so many techniques derived from the research activity can be transferred to this platform. Undergraduate and graduate researchers, especially those from underrepresented groups in STEM, are supported to develop the research techniques, build the iPhotons, and assist remote users. Therefore, the iPhotons benefits not only university researchers, but also K-12 students and the public through existing outreach programs. Together, this project advances fundamental sciences in materials and photonics, and promotes teaching, training, and learning to a wide range of people.Technical DescriptionThis project builds reconfigurable photonic materials and devices by light-guided assembly of colloidal nanoparticles, and further reveals their collective properties and potential applications. The research addresses a fundamental challenge in nanoscience, which is the reconfigurable self-assembly of nanoparticles into desired architectures in a controlled way. The research team uses the momentum of a laser beam to induce and control the electrodynamic interactions (i.e., optical binding) of nanoparticles. A combined experimental and computational approach is used to understand the nanoscale optical binding and realize reconfigurable light-guided assembly. First, the team investigates the influence of the size, shape, and material of nanoparticles to their optical binding interactions and self-assembly behaviors. Second, the team enables self-assembly of nanoparticles into reconfigurable assemblies (i.e., optical matter) with synergized intensity, phase, polarization, and wavelength of light. Advanced holographic beam shaping methods are used to sculpt the optical landscape of a laser field and control the assembly of nanoparticles. Third, the team measures the collective photonic properties of the optical matter, such as surface lattice resonances, second harmonic generation, and surface-enhanced Raman scattering. Lastly, the team demonstrates new applications of optical matter clusters as optomechanical nanomotors and biosensors. In sum, this project establishes a new technology for reconfigurable assembly of nanoparticles, enriches the photonic world of discrete plasmonic nanoparticle arrays, and enables reconfigurable optical matter as multifunctional photonic materials and devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性描述纳米科学的一个诱人的前景是能够用纳米尺度的构建块来构建新型的电子和光子材料。具有良好控制尺寸和形状的化学合成纳米颗粒允许人们定制材料或结构的特性。能够将纳米粒子重新组装成新的形状将使科学家和工程师能够构建能够对刺激做出反应的多功能材料。 可重构组装在生命系统中很常见,但在人造纳米材料中仍然很少见。例如,眼睛的透镜改变以调整焦点,或者虹膜在强光下收缩。然而,目前用于组装纳米颗粒的方法大多导致具有固定尺寸和形状的结构。该项目通过使用光以可控的方式将纳米颗粒组装成可重构的形状来满足这一需求。这将通过将激光束成形为结构化的光场并研究与纳米颗粒的相互作用来实现。研究小组将测量纳米颗粒阵列的光学、电子和机械特性,旨在展示光驱动纳米电机和生物传感器等新应用。该项目还将启用一个名为“iPhotons”的新的远程访问教育平台,这是一个可通过互联网访问的全息光镊和光学纳米材料模拟平台。iPhotons平台类似于研究系统,因此许多来自研究活动的技术可以转移到这个平台上。本科生和研究生研究人员,特别是那些来自STEM中代表性不足的群体的研究人员,将得到支持,以开发研究技术,构建iPhotons,并协助远程用户。因此,iPhotons不仅使大学研究人员受益,还通过现有的推广计划使K-12学生和公众受益。本项目旨在推进材料学和光子学的基础科学,并促进教学、培训和学习。技术说明本项目通过光引导组装胶体纳米粒子构建可重构光子材料和器件,并进一步揭示其集体性质和潜在应用。这项研究解决了纳米科学的一个基本挑战,即以可控的方式将纳米粒子重新组装成所需的结构。研究小组利用激光束的动量来诱导和控制电动相互作用(即,光学结合)。结合实验和计算的方法是用来理解纳米光学绑定和实现可重构光导组件。首先,研究小组研究了纳米粒子的大小、形状和材料对其光学结合相互作用和自组装行为的影响。其次,该团队能够将纳米粒子自组装成可重构的组件(即,光学物质)具有协同的光的强度、相位、偏振和波长。先进的全息光束整形方法被用来塑造激光场的光学景观和控制纳米颗粒的组装。第三,研究小组测量了光学物质的集体光子特性,如表面晶格共振、二次谐波产生和表面增强拉曼散射。最后,该团队展示了光学物质簇作为光机械纳米马达和生物传感器的新应用。总而言之,该项目建立了纳米颗粒可重构组装的新技术,丰富了离散等离子体纳米颗粒阵列的光子世界,并使可重构光学物质成为多功能光子材料和器件。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multifunctional Laser-Induced Bubble Microresonator for Upconversion Emission Enhancement
  • DOI:
    10.1021/acs.jpcc.3c00559
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kataria;Catherine Currie Duncan;Bergen Polinko Murray;Manav Bindesh Parikh;Zijie Yan
  • 通讯作者:
    M. Kataria;Catherine Currie Duncan;Bergen Polinko Murray;Manav Bindesh Parikh;Zijie Yan
Optical trapping and manipulation for single-particle spectroscopy and microscopy
  • DOI:
    10.1063/5.0086328
  • 发表时间:
    2022-08-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Chen, Zhenzhen;Cai, Zhewei;Yan, Zijie
  • 通讯作者:
    Yan, Zijie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zijie Yan其他文献

Optical Binding of Metal Nanoparticles Self‐Reinforced by Plasmonic Surface Lattice Resonances
通过等离子体表面晶格共振自增强金属纳米粒子的光学结合
  • DOI:
    10.1002/adom.202301158
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Tailei Qi;Fan Nan;Zijie Yan
  • 通讯作者:
    Zijie Yan
Gradient Sparification for Asynchronous Distributed Training
  • DOI:
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zijie Yan
  • 通讯作者:
    Zijie Yan
Unblocked and integrated anticoagulant sulfonate film coating for efficient blood oxygenation
用于高效血液氧合的无阻塞且集成的抗凝血磺酸盐薄膜涂层
  • DOI:
    10.1016/j.memsci.2025.124268
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Lunhao Zhi;Zijie Yan;Xianda Liu;Xueqin He;Siyu Li;Chong Cheng;Shudong Sun;Changsheng Zhao
  • 通讯作者:
    Changsheng Zhao
Optical Printing of Electrodynamically Coupled Metallic Nanoparticle
电动耦合金属纳米颗粒的光学印刷
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Bao;Zijie Yan;N. Scherer
  • 通讯作者:
    N. Scherer
Bragg diffraction from sub-micron particles isolated by optical tweezers
光镊分离的亚微米颗粒的布拉格衍射
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Gao;R. Harder;S. Southworth;J. Guest;N. Scherer;Zijie Yan;L. Ocola;M. Pelton;L. Young
  • 通讯作者:
    L. Young

Zijie Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zijie Yan', 18)}}的其他基金

OP: Building Artificial Photonic Materials from Nanoscale Optical Matter
OP:用纳米级光学物质构建人造光子材料
  • 批准号:
    1951330
  • 财政年份:
    2019
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Continuing Grant
OP: Building Artificial Photonic Materials from Nanoscale Optical Matter
OP:用纳米级光学物质构建人造光子材料
  • 批准号:
    1610271
  • 财政年份:
    2016
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Continuing Grant

相似海外基金

ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Research Grant
Reconfigurable Diffractive Optical Neural Networks with Phase Change Material based Photonic Device
具有基于相变材料的光子器件的可重构衍射光学神经网络
  • 批准号:
    2316627
  • 财政年份:
    2023
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Standard Grant
Study on a phase-change optical switch for low-power-consumption reconfigurable photonic networks
低功耗可重构光子网络相变光开关研究
  • 批准号:
    21H01398
  • 财政年份:
    2021
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Reconfigurable broadband photonic characterization system
可重构宽带光子表征系统
  • 批准号:
    RTI-2022-00096
  • 财政年份:
    2021
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Research Tools and Instruments
RAISE-EQuIP: A high-speed, reconfigurable, fully integrated circuit platform for quantum photonic applications
RAISE-EQuIP:用于量子光子应用的高速、可重新配置、全集成电路平台
  • 批准号:
    1842691
  • 财政年份:
    2018
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Standard Grant
OP: MEMS-driven photonic metamaterials: dynamic wavefront tailoring with reconfigurable metasurfaces
OP:MEMS 驱动的光子超材料:具有可重构超表面的动态波前定制
  • 批准号:
    1810252
  • 财政年份:
    2018
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Standard Grant
OP: Application-Aware Reconfigurable Silicon-Photonic Interconnected Computing Systems for Energy-Efficient and Scalable Data Centers
OP:用于节能和可扩展数据中心的应用感知可重构硅光子互连计算系统
  • 批准号:
    1611560
  • 财政年份:
    2016
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Standard Grant
Scalable Nanomanufacturing of Reconfigurable Photonic Crystals
可重构光子晶体的可扩展纳米制造
  • 批准号:
    1562861
  • 财政年份:
    2016
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1547034
  • 财政年份:
    2015
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Standard Grant
EARS: A Wideband Frequency-Agile Silicon Photonic mm-Wave Receiver with Automatic Jammer Suppression via Rapidly Reconfigurable Optical Notch Filters
EARS:宽带频率捷变硅光子毫米波接收器,通过快速可重构光学陷波滤波器实现自动干扰抑制
  • 批准号:
    1547432
  • 财政年份:
    2015
  • 资助金额:
    $ 45.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了