OP: Building Artificial Photonic Materials from Nanoscale Optical Matter
OP:用纳米级光学物质构建人造光子材料
基本信息
- 批准号:1610271
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: Photonic materials are patterned constructs consisting of particles, smaller than the wavelength of light, that are artificially bound together in various ordered arrangements. By varying the size, shape and periodic arrangement of the particles it is possible to control material optical properties such as color, shine and even the absorption of light. This project aims to design and build photonic materials comprising particles that are only a few nanometers in size. This is accomplished by shining light onto a fluid containing numerous metal nanoparticles. Analogous to the process of atoms joining to form molecules, the metal nanoparticles bind together in the fluid to form arrangements of particles. By varying the flow of the fluid it is possible to control the structure of these photonic materials, and therefore their optical properties. A combination of computer simulations and experiments provide a rich environment for training undergraduate and graduate students. Incorporating components of the research into existing undergraduate courses and laboratory experiments enables students to develop a deeper understanding of a wide range of materials-related concepts. Technical description: Optical matter represents a unique material arising from pure mesoscale electrodynamic interactions of colloidal particles in an optical field. Due to significant instabilities associated with nanoparticle-comprising optical matter, previous studies have predominately addressed microparticle-based structures. This project aims to eliminate the inherent instability problem and create a paradigm for constructing artificial photonic materials using nanoscale optical matter. The paradigm relies on advanced laser beam shaping techniques and significant mesoscale electrodynamic interactions among strongly scattering plasmonic metal nanoparticles in optical fields. Efficient simulation models are developed to elucidate the collective electrodynamic interactions of multiple nanoparticles, to reveal the equilibrium binding configurations. Optimized optical fields are created to increase the spatial and temporal stability of the nanoscale optical matter. Optical-matter-embedded polymer microparticles are further fabricated in microfluidic channels by photopolymerization. These hybrid particles can serve as building blocks for two- or three-dimensional metal-dielectric superlattices, leading to new types of photonic materials with tailored optical properties.
非技术描述:光子材料是由小于光波长的粒子组成的图案化结构,这些粒子以各种有序的排列人为地结合在一起。通过改变颗粒的大小、形状和周期性排列,可以控制材料的光学属性,例如颜色、光泽,甚至光的吸收。这个项目的目标是设计和制造包含只有几个纳米大小的粒子的光子材料。这是通过将光线照射到含有大量金属纳米颗粒的流体上来实现的。类似于原子结合形成分子的过程,金属纳米颗粒在流体中结合在一起,形成颗粒的排列。通过改变流体的流动,可以控制这些光子材料的结构,从而控制它们的光学性质。计算机模拟和实验的结合为培养本科生和研究生提供了丰富的环境。将研究的组成部分融入现有的本科课程和实验室实验中,使学生能够对广泛的材料相关概念有更深入的理解。技术描述:光学物质是由胶体粒子在光场中的纯介观电动力学相互作用产生的一种独特的材料。由于与含有纳米颗粒的光学物质相关的显著不稳定性,以前的研究主要针对基于微粒的结构。该项目旨在消除固有的不稳定性问题,并创造一种使用纳米级光学材料构建人造光子材料的范例。这一模式依赖于先进的激光光束整形技术和光学领域中强散射等离子体金属纳米颗粒之间显著的介观电动力学相互作用。开发了有效的模拟模型来解释多个纳米粒子的集体电动力学相互作用,以揭示平衡的结合构型。优化的光场被创建以增加纳米尺度光学物质的空间和时间稳定性。通过光聚合,在微流控通道中进一步制备了光学包埋聚合物微粒。这些混合粒子可以作为二维或三维金属介电超晶格的构建块,从而产生具有定制光学性能的新型光子材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zijie Yan其他文献
Optical Binding of Metal Nanoparticles Self‐Reinforced by Plasmonic Surface Lattice Resonances
通过等离子体表面晶格共振自增强金属纳米粒子的光学结合
- DOI:
10.1002/adom.202301158 - 发表时间:
2023 - 期刊:
- 影响因子:9
- 作者:
Tailei Qi;Fan Nan;Zijie Yan - 通讯作者:
Zijie Yan
Gradient Sparification for Asynchronous Distributed Training
- DOI:
- 发表时间:
2019-10 - 期刊:
- 影响因子:0
- 作者:
Zijie Yan - 通讯作者:
Zijie Yan
Unblocked and integrated anticoagulant sulfonate film coating for efficient blood oxygenation
用于高效血液氧合的无阻塞且集成的抗凝血磺酸盐薄膜涂层
- DOI:
10.1016/j.memsci.2025.124268 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:9.000
- 作者:
Lunhao Zhi;Zijie Yan;Xianda Liu;Xueqin He;Siyu Li;Chong Cheng;Shudong Sun;Changsheng Zhao - 通讯作者:
Changsheng Zhao
Optical Printing of Electrodynamically Coupled Metallic Nanoparticle
电动耦合金属纳米颗粒的光学印刷
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ying Bao;Zijie Yan;N. Scherer - 通讯作者:
N. Scherer
Bragg diffraction from sub-micron particles isolated by optical tweezers
光镊分离的亚微米颗粒的布拉格衍射
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yuan Gao;R. Harder;S. Southworth;J. Guest;N. Scherer;Zijie Yan;L. Ocola;M. Pelton;L. Young - 通讯作者:
L. Young
Zijie Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zijie Yan', 18)}}的其他基金
Building reconfigurable photonic materials and devices by light-guided self-assembly of nanoparticles
通过纳米粒子的光导自组装构建可重构光子材料和器件
- 批准号:
2131079 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
OP: Building Artificial Photonic Materials from Nanoscale Optical Matter
OP:用纳米级光学物质构建人造光子材料
- 批准号:
1951330 - 财政年份:2019
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
相似国自然基金
基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
- 批准号:31771933
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Collaborative R&D
TRUST - Improving TRUST in artificial intelligence and machine learning for critical building management
信任 - 提高对关键建筑管理的人工智能和机器学习的信任
- 批准号:
10068043 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Collaborative R&D
Building better molecular models through artificial intelligence
通过人工智能建立更好的分子模型
- 批准号:
2888940 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Studentship
Artificial Intelligence driven algorithm to accelerate low carbon building renovation.
人工智能驱动算法加速低碳建筑改造。
- 批准号:
2785695 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Studentship
CyberTraining: Implementation: Small: Building Future Research Workforce in Trustworthy Artificial Intelligence (AI)
网络培训:实施:小型:建立可信赖人工智能 (AI) 领域的未来研究队伍
- 批准号:
2413654 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CISE-MSI: DP: SaTC: MSI Research Capacity Building for Artificial Intelligence (AI)-enabled Vulnerability Assessment and Remediation in Cyberinfrastructure
CISE-MSI:DP:SaTC:MSI 针对网络基础设施中人工智能 (AI) 启用的漏洞评估和修复的研究能力建设
- 批准号:
2219464 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Fluid channel Array Brick (FAB) Blood-Gas Exchangers for building Artificial Lungs for Critical Respiratory Failure Treatment
用于构建人工肺以治疗危重呼吸衰竭的流体通道阵列砖 (FAB) 血气交换器
- 批准号:
10668676 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
RII Track 2 FEC: Building Research Infrastructure and Workforce in Edge Artificial Intelligence
RII Track 2 FEC:建设边缘人工智能研究基础设施和劳动力
- 批准号:
2218046 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Cooperative Agreement
Artificial Intelligence for Building Performance
人工智能提升性能
- 批准号:
574274-2022 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
University Undergraduate Student Research Awards
Bioethical Considerations for Building, Evaluating, and Implementing Artificial Intelligence in Perinatal Mood and Anxiety Disorders
构建、评估和实施人工智能治疗围产期情绪和焦虑症的生物伦理考量
- 批准号:
10593284 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别: