Collaborative Research: CISE-MSI: DP: CCF: SHF: MSI/HSI Research Capacity Building via Secure and Efficient Hardware Implementation of Cellular Computational Networks

合作研究:CISE-MSI:DP:CCF:SHF:通过安全高效的蜂窝计算网络硬件实现进行 MSI/HSI 研究能力建设

基本信息

  • 批准号:
    2131163
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).As use of renewable energy sources, such as wind and solar power, continue to increase, distributed Artificial Intelligence (AI) is needed to synthesize the large amounts of predictive use indicators, such as weather data and Internet of Things (IoT) sensor data, in order to allow the electric power grid to continue to operate reliably with the high levels of variability and uncertainty associated with renewable energy sources. Since this requires real-time processing, a secure and efficient hardware platform is needed; AI software alone is not sufficient. The Cellular Computational Network (CCN) is a distributed AI framework, with a brain-inspired neural network architecture, which is suitable for critical networked systems, such as the electric power grid. Hence, utilizing secure and efficient CCN hardware implementations for power system applications will accelerate operations to achieve a real-time performance guarantee on representative large-scale networks without compromising accuracy, and will simultaneously provide resiliency to cyber-physical system attacks, thus enhancing sustainable and secure power system operation.This project develops both synchronous logic and asynchronous logic hardware implementations of CCN cells and overall CCN systems using reconfigurable Field Programmable Gate Arrays, and explores approximate computing opportunities for application to CCNs. The resulting CCN hardware systems will be tested via integration into Clemson University’s various Real-Time Power and Intelligent Systems (RTPIS) Laboratory testbeds, including for wide area predictive state estimation of power system variables, solving dynamic power flows, and predictions of spatial-temporal wind speed/power, solar irradiance/power, and energy consumption of buildings/rooms. Furthermore, this project partners a Minority/Hispanic Serving Institution, Texas A&M University – Kingsville (TAMUK), with Clemson University to involve many more TAMUK Computer Science faculty with RTPIS Lab related research, and establishes a pipeline of high-performing Hispanic students from TAMUK to pursue Computer Engineering or Computer Science PhD degrees.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).As use of renewable energy sources, such as wind and solar power, continue to increase, distributed Artificial Intelligence (AI) is needed to synthesize the large amounts of predictive use indicators, such as weather data and Internet of Things (IoT) sensor data, in order to allow the electric power grid to continue to operate reliably with the high levels of与可再生能源相关的可变性和不确定性。由于这需要实时处理,因此需要一个安全有效的硬件平台。仅AI软件就不够。蜂窝计算网络(CCN)是一个分布式的AI框架,具有脑启发的神经网络体系结构,适用于关键的网络系统,例如电力电网。因此,在电力系统应用程序中利用安全有效的CCN硬件实施将加速操作,以实现实时性能保证,不影响准确性而代表大规模网络,并且只会为网络物理系统攻击提供弹性可重新配置的现场可编程门阵列,并探索用于应用CCN的近似计算机会。由此产生的CCN硬件系统将通过集成到Clemson大学的各种实时电力和智能系统(RTPIS)实验室测试床位,包括用于广泛的电力系统变量的范围预测状态估计,解决动态功率流以及空间 - 周期性风速/电力的预测,构建速度/电力/电力和能量耗材和能源摄入型房间。此外,该项目与克莱姆森大学(Clemson University)合作,得克萨斯州农工大学(Texas A&M University)是少数族裔/西班牙裔服务机构,与克莱姆森大学(Clemson University)一起,与RTPIS实验室相关研究涉及更多的Tamuk计算机科学教师,并建立了从TOMESCORY和计算机科学统计的高表现的西班牙裔学生,并建立了一项高表现的西班牙裔学生。诚实地通过评估来诚实地使用基金会的智力优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taesic Kim其他文献

A Blockchain-Based Internet of Things (IoT) Network for Security-Enhanced Wireless Battery Management Systems
用于安全增强型无线电池管理系统的基于区块链的物联网 (IoT) 网络
Online Parameter Identification for State of Power Prediction of Lithium-ion Batteries in Electric Vehicles Using Extremum Seeking
基于极值搜索的电动汽车锂离子电池功率状态在线参数辨识预测
A new hybrid filter-based online condition monitoring for lithium-ion batteries
一种新型基于混合滤波器的锂离子电池在线状态监测
An Advanced Persistent Threat (APT)-Style Cyberattack Testbed for Distributed Energy Resources (DER)
用于分布式能源 (DER) 的高级持续威胁 (APT) 式网络攻击测试台
  • DOI:
    10.1109/dmc51747.2021.9529953
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyuchan Park;Bohyun Ahn;Jinsan Kim;D. Won;Youngtae Noh;Jinchun Choi;Taesic Kim
  • 通讯作者:
    Taesic Kim
Device-Centric Ransomware Detection using Machine Learning-Based Memory Forensics for Smart Inverters
使用基于机器学习的智能逆变器内存取证进行以设备为中心的勒索软件检测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alycia M. Jenkins;A. Akash;BoHyun An;Taesic Kim
  • 通讯作者:
    Taesic Kim

Taesic Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taesic Kim', 18)}}的其他基金

Collaborative Research: CISE-MSI: RPEP: CPS: A Resilient Cyber-Physical Security Framework for Next-Generation Distributed Energy Resources at Grid Edge
合作研究:CISE-MSI:RPEP:CPS:电网边缘下一代分布式能源的弹性网络物理安全框架
  • 批准号:
    2219733
  • 财政年份:
    2022
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
  • 批准号:
    2321492
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321531
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
  • 批准号:
    2318593
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
  • 批准号:
    2318592
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318703
  • 财政年份:
    2023
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了