CISE-MSI: DP: IIS:III: Deep Learning Based Automated Concept and Caption Generation of Medical Images Towards Developing an Effective Decision Support System (DSS)
CISE-MSI:DP:IIS:III:基于深度学习的医学图像自动概念和标题生成,以开发有效的决策支持系统 (DSS)
基本信息
- 批准号:2131207
- 负责人:
- 金额:$ 43.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Identifying and labeling important features in medical images such as X-rays and ultrasounds is fundamental to both diagnosis itself and to building libraries of images that support education, training, and auditing of medical quality. This work is time-consuming even for trained experts, making it an impactful and important problem domain to study for researchers in computer vision, machine learning (ML), and natural language processing (NLP). These artificial intelligence (AI)-based techniques have made great progress in object recognition and labeling for everyday camera images; however, medical images pose additional challenges because of the need to account for detail and relationships between substructures in the image, the need to generate captions that apply not just to the whole image but to these important substructures, and the need to handle noise and artifacts created in medical image processing. Further, the tolerance for error is low; interpretations need to be coherent, grammatically, and semantically correct in order to be useful. This project focuses on the intersection of biomedical informatics and imaging science, working to develop high quality datasets of human-annotated visual concepts in images that appear in public collections such as open access biomedical journals, then using those datasets to train novel vision, ML, and NLP algorithms. The work will support multi-institutional research and educational collaborations between three minority-serving institutions, providing advanced research and classroom training in AI, ML, and cloud computing to students from groups historically underrepresented in computing. To improve image interpretation and retrieval effectiveness, this project will (1) create a crowdsourcing-based annotation system to clinically annotate important regions of interest (ROIs) of images; (2) advance object detection models to segment images and map medical image ROIs; (3) advance multilabel concept classification techniques by considering correlations between concepts; and (4) apply contextualized embeddings via deep language models to generate the captions. The proposed approaches will be evaluated through comparison with current methods in benchmark datasets, including the ones constructed for this project. The end goal is the development of an AI-based prototype that helps physicians focus on interesting image regions, find relevant comparison images, and describe findings in correct and standard ways, all of which can reduce medical errors and benefit both medical departments and society by reducing the cost per exam. In addition to the research objectives, the project will implement a research-education medical AI training program including cloud-enabled classrooms, cross-institutional mentoring, and partnering with an existing industry internship “pathway to success” initiative to build the science and technology workforce of the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。识别和标记医学图像中的重要特征,例如X射线和超声波,对诊断本身以及支持教育,培训和审核医学质量的图像的图书馆都是至关重要的。这项工作即使对于训练有素的专家来说也很耗时,这使其成为一个有影响力且重要的问题领域,可以研究计算机视觉,机器学习(ML)和自然语言处理(NLP)的研究人员。这些基于人工智能(AI)的技术在每天的相机图像方面取得了重大进展。但是,医疗图像构成了其他挑战,因为需要考虑图像中的细节和子结构之间的关系,需要生成不仅适用于整个图像的字幕,还适用于这些重要的子结构,以及处理医学图像处理中创建的噪声和工件的需要。此外,误差的公差很低。为了有用,解释需要相干,语法和语义上正确。该项目的重点是生物医学信息和成像科学的交集,旨在在图像中开发高质量的人类宣传的视觉概念数据集,这些图像出现在公共集合中,例如开放式生物医学期刊,然后使用这些数据集来培训新颖的视觉,ML,ML和NLP算法。这项工作将支持三个少数族裔服务机构之间的多机构研究和教育合作,从而向来自历史上代表性不足的计算机的学生提供了AI,ML和云计算的高级研究和课堂培训。为了提高图像解释和检索有效性,该项目将(1)创建一个基于人群的注释系统,以临床注释图像的重要区域(ROI); (2)预先对象检测模型分割图像并映射医疗图像ROI; (3)通过考虑概念之间的相关性来推进多标签概念分类技术; (4)通过深层语言模型应用上下文化的嵌入以生成字幕。提出的方法将通过与基准数据集中的当前方法进行比较,包括为该项目构建的方法。最终目标是开发基于AI的原型,该原型可帮助医生专注于有趣的图像区域,查找相关的比较图像,并以正确和标准的方式描述发现,所有这些都可以通过降低每次考试成本来减少医疗错误和受益的医疗部门和社会。除研究目标外,该项目还将实施一项研究教育医学AI培训计划,包括支持云的教室,跨机构心理,并与现有的行业实习“成功途径”倡议合作,以建立未来的科学和技术劳动力。这一奖项通过评估律师的构建委员会的构建授予的构建委员会的知识范围构成了诚实的范围。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Concept Detection and Caption Prediction in ImageCLEFmedical Caption 2023 with Convolutional Neural Networks; Vision and Text-to-Text Transfer Transformers
使用卷积神经网络进行 ImageCLEFmedical Caption 2023 中的概念检测和字幕预测;
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hasan M;Layode O;Rahman M.
- 通讯作者:Rahman M.
CS_Morgan at ImageCLEFmedical 2022 Caption Task: Deep Learning Based Multi-Label Classification and Transformers for Concept Detection & Caption Prediction
CS_Morgan 在 ImageCLEFmedical 2022 标题任务:基于深度学习的多标签分类和用于概念检测的 Transformers
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rahman, Md M.;Layode, O.
- 通讯作者:Layode, O.
Media Interestingness Prediction in ImageCLEFfusion 2023 with Dense Architecture-based Ensemble & Scaled; Gradient Boosting Regressor Model
使用基于密集架构的集成在 ImageCLEFfusion 2023 中进行媒体兴趣度预测
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Emon, M;Rahman, M.
- 通讯作者:Rahman, M.
Statistical Analysis of Imbalanced Classification with Training Size Variation and Subsampling on Datasets of Research Papers in Biomedical Literature
生物医学文献研究论文数据集训练规模变化和子采样的不平衡分类统计分析
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Dixon, J;Rahman, M.
- 通讯作者:Rahman, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Md Rahman其他文献
Effect of Gamma Irradiation on the Shelf Life and Quality of Mutton
伽马射线照射对羊肉货架期及品质的影响
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. A. Hashem;Md Anwar Hossain;M. Sadakuzzaman;Muckta Khan;Md Rahman;M. Islam - 通讯作者:
M. Islam
Effects of different levels of oxalic acid administration on feed intake and nutrient digestibility in goats
不同水平草酸施用对山羊采食量和养分消化率的影响
- DOI:
10.17576/jsm-2017-4604-01 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. M. Rahman;Md Rahman;M. Niimi;W. Khadijah;R. Akashi;R. Abdullah - 通讯作者:
R. Abdullah
Green Hydrogen Production in Bangladesh: A Zero Carbon Initiative
孟加拉国的绿色氢生产:零碳倡议
- DOI:
10.1109/icps60393.2023.10428862 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Khandakar Sajid;Md Rahman;Abrar Hossen;Sk Faiyaz;Tahmed Salim;Tahmid Rafid;Al Deen;Asef Jamil;S. AzwadA.;Nazmul Huda - 通讯作者:
Nazmul Huda
P03-066-23 Conjugated Linoleic Acid (CLA) Attenuates the Negative Effects of Thiazolidinedione Medication on Bone Remodeling
- DOI:
10.1016/j.cdnut.2023.100577 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Md Rahman;Chiara Cugno;Khadega Ibrahim;Dhanya Kizhakayil;Abbirami Sathappan;Mohammed Elanbari - 通讯作者:
Mohammed Elanbari
Hazaribagh tanneries : a comparative study of pollution control options
哈扎里巴格制革厂:污染控制方案的比较研究
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Md Rahman - 通讯作者:
Md Rahman
Md Rahman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Md Rahman', 18)}}的其他基金
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
- 批准号:
2327972 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Hardware Security Education for All Through Seamless Extension of Existing Curricula
合作研究:SaTC:EDU:通过无缝扩展现有课程为所有人提供硬件安全教育
- 批准号:
2114200 - 财政年份:2021
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
CRII: SaTC: Rowhammer Attack on Fresh and Recycled Memory Chips: Security Risks and Defenses
CRII:SaTC:对新鲜和回收内存芯片的 Rowhammer 攻击:安全风险和防御
- 批准号:
2214108 - 财政年份:2021
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
CRII: SaTC: Rowhammer Attack on Fresh and Recycled Memory Chips: Security Risks and Defenses
CRII:SaTC:对新鲜和回收内存芯片的 Rowhammer 攻击:安全风险和防御
- 批准号:
1850241 - 财政年份:2019
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
Research Initiation Award: Integrating Image and Text Information for Biomedical Literature-Based Cross and Multimodal Retrieval
研究启动奖:基于图像和文本信息的生物医学文献交叉和多模态检索整合
- 批准号:
1601044 - 财政年份:2016
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
Targeted Infusion Project: Infusing Computational Thinking and Visual Learning into an Introductory Computer Science Course to Promote Students' Success and Retention
有针对性的注入项目:将计算思维和视觉学习注入计算机科学入门课程,以促进学生的成功和保留
- 批准号:
1623335 - 财政年份:2016
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
相似国自然基金
探索MSI-H肿瘤内源TREX1调控抗肿瘤免疫的机制及相关免疫治疗策略开发
- 批准号:82371848
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于MALDI-MSI技术的我国白头翁属药材显微质谱成像鉴定研究
- 批准号:82373999
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
外泌体MSI1调控去泛素化酶USP28诱导肝Kupffer细胞极化在乳腺癌肝转移中的作用和机制研究
- 批准号:82303449
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MSI1/circBRCA1调控LATS1mRNA稳定性促进BRCA1突变的卵巢癌铂敏感的分子机理
- 批准号:82303588
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
碱氯环境中NiCrBSi-MSi2涂层的氧化膜生长机制与腐蚀-磨损作用机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CISE-MSI: DP: CNS: AI-powered Diagnosis Augmented by Self-sustaining Sensing System for Intelligent Wastewater Infrastructure Management
CISE-MSI:DP:CNS:通过自我维持传感系统增强人工智能诊断,实现智能废水基础设施管理
- 批准号:
2318641 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
CISE-MSI:DP:Real-Time Aerial Imaging with Edge AI
CISE-MSI:DP:利用边缘 AI 进行实时航空成像
- 批准号:
2318546 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
- 批准号:
2318711 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS: Event Detection and Knowledge Extraction via Learning and Causality Analysis for Resilience Emergency Response
协作研究:CISE-MSI:DP:IIS:通过学习和因果关系分析进行事件检测和知识提取,以实现弹性应急响应
- 批准号:
2219615 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318664 - 财政年份:2023
- 资助金额:
$ 43.98万 - 项目类别:
Standard Grant