Understanding Thermal Energy Scavenging in All-Inorganic Perovskite Nanocrystals
了解全无机钙钛矿纳米晶体的热能清除
基本信息
- 批准号:2131408
- 负责人:
- 金额:$ 46.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:The industrial revolution was enabled by heat engines that perform work by converting thermal energy (heat or high temperature) to mechanical energy. Recently, several advantages have been theorized for heat engines that do work by converting heat into light, similar to how traditional engines use fluids or gases such as steam. However, there are very few known optical materials that can efficiently convert heat to optical energy, in part because heat degrades their optical performance. This project will prepare new classes of materials with precise structural and chemical properties on the nanoscale to allow for efficient conversion between thermal and light energy. The research team will examine how increasing the thermal energy in these materials can also result, unusually, in an increase of the energy of light that they emit. This phenomenon can ultimately lead to significantly more efficient heat engines with no moving parts, better solar cells, or new methods of refrigeration that do not require compressed gasses or mechanical components. The project will support graduate and undergraduate research students working in the PI’s laboratory as well as the development of novel curricula and technological tools for teaching large-format freshman chemistry courses. The primary investigator will refine some of the best innovations developed during the pandemic and take advantage of these for the transition back to classroom instruction.TECHNICAL SUMMARY:This project will study thermal energy scavenging by one-photon optical upconversion, also known as anti-Stokes photoluminescence. Upconversion results when heated photoluminescent materials emit band-edge photons during subgap excitation, while simultaneously decreasing in temperature. Inorganic lead halide perovskite nanocrystals are a champion materials system for efficient one-photon upconversion, but fundamental details of the mechanism are unknown, impeding rational strategies for further development. Spectroscopic studies conducted by the PI’s team will elucidate a clear mechanism for optical up-conversion, as well as outline the structure-property relationships that define the absorption cross section, bandwidth, temperature response, and the fundamental limits on efficiency. The research team will vary composition and morphology during nanocrystal synthesis. Structural parameters such as crystal phase, shape, and surface-to-volume ratio will be tracked using high resolution transmission electron microscopy, and powder X-ray diffractometry. In parallel, the team will perform photoluminescence excitation spectroscopy and photoluminescence lifetime studies. These experiments will quantify the dependence on above-gap or below-gap excitation wavelength, power density, and nanocrystal temperature to identify the unique states that mediate the interconversion of vibrational and electronic excitations, while preserving the intrinsic, near-ideal luminescence efficiency of the nanocrystals. The overarching goal is to understand the thermal energy scavenging properties of inorganic lead halide perovskite nanocrystals to create luminescent materials that can aid thermal-to-optical energy conversion, optical up-conversion, and optically driven refrigeration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结:工业革命是由热力发动机实现的,热力发动机通过将热能(热量或高温)转化为机械能来做功。最近,热力发动机的几个优点已经被理论化,它们通过将热量转化为光来工作,类似于传统发动机使用流体或气体(如蒸汽)的方式。然而,很少有已知的光学材料可以有效地将热量转换为光能,部分原因是热量降低了它们的光学性能。该项目将制备在纳米级上具有精确结构和化学性质的新材料,以实现热能和光能之间的有效转换。研究小组将研究如何增加这些材料中的热能也会导致它们发出的光的能量增加。这种现象最终可以导致更有效的热力发动机,没有移动部件,更好的太阳能电池或不需要压缩气体或机械部件的新制冷方法。该项目将支持在PI实验室工作的研究生和本科生研究生,以及开发用于教授大型大一化学课程的新课程和技术工具。主要研究人员将改进在大流行期间开发的一些最好的创新,并利用这些优势过渡到课堂教学。技术摘要:本项目将研究通过单光子光学上转换(也称为反斯托克斯光致发光)清除热能。当加热的光致发光材料在子隙激发期间发射带边光子,同时温度降低时,会产生上转换。无机卤化铅钙钛矿纳米晶体是高效单光子上转换的冠军材料系统,但机制的基本细节尚不清楚,阻碍了进一步发展的合理策略。PI团队进行的光谱研究将阐明光学上转换的明确机制,并概述定义吸收截面,带宽,温度响应和效率基本限制的结构-性质关系。研究小组将在合成过程中改变成分和形态。将使用高分辨率透射电子显微镜和粉末X射线衍射法跟踪晶相、形状和表面积与体积比等结构参数。同时,该团队将进行光致发光激发光谱和光致发光寿命研究。这些实验将量化对间隙以上或间隙以下激发波长、功率密度和温度的依赖性,以确定介导振动和电子激发相互转换的独特状态,同时保持纳米晶体的固有的、接近理想的发光效率。总体目标是了解无机卤化铅钙钛矿纳米晶体的热能清除特性,以创造有助于热-光能量转换、光学上转换和光学驱动制冷的发光材料。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying Order during Field-Driven Alignment of Colloidal Semiconductor Nanorods
胶体半导体纳米棒场驱动排列期间的量化顺序
- DOI:10.1021/acsnano.1c08488
- 发表时间:2022
- 期刊:
- 影响因子:17.1
- 作者:Ratnaweera, Rivi J.;Rodríguez Ortiz, Freddy A.;Gripp, Nicholas J.;Sheldon, Matthew T.
- 通讯作者:Sheldon, Matthew T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon North其他文献
Endogenous monoclonal immunoglobulins analyzed using the EXENT® solution and LC-MS
使用 EXENT® 溶液和 LC-MS 分析内源性单克隆免疫球蛋白
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.2
- 作者:
D. Barnidge;Derek Troske;Simon North;Gregg Wallis;Mark C. Perkins;Stephen Harding - 通讯作者:
Stephen Harding
Simon North的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon North', 18)}}的其他基金
Expanding the Capabilities of SERS via Electronic Raman Spectroscopy
通过电子拉曼光谱扩展 SERS 的功能
- 批准号:
2108288 - 财政年份:2021
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Atmospheric Oxidation Mechanism of Isoprene
异戊二烯的大气氧化机理
- 批准号:
0204705 - 财政年份:2002
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
相似国自然基金
Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
- 批准号:51806227
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced protective coatings for thermal energy management devices
用于热能管理设备的先进保护涂层
- 批准号:
LP230100412 - 财政年份:2024
- 资助金额:
$ 46.5万 - 项目类别:
Linkage Projects
BioBuild - Innovative bio-based building materials with thermal energy storage function
BioBuild——具有储热功能的创新生物基建筑材料
- 批准号:
10088600 - 财政年份:2024
- 资助金额:
$ 46.5万 - 项目类别:
EU-Funded
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 46.5万 - 项目类别:
Research Grant
STTR Phase II: Thermal Imaging, Augmentation of Microwave Energy in Various Tissues and Chronic Safety
STTR 第二阶段:热成像、增强各种组织中的微波能量和长期安全性
- 批准号:
2301440 - 财政年份:2024
- 资助金额:
$ 46.5万 - 项目类别:
Cooperative Agreement
EFFICIENT COMPACT MODULAR THERMAL ENERGY STORAGE SYSTEM
高效紧凑的模块化热能存储系统
- 批准号:
10066626 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
EU-Funded
Energy interface engineering for self-sustaining solar thermal distillation system: Enhancement of atmospheric cooling using microstructured surface layers
自持太阳能热蒸馏系统的能量界面工程:利用微结构表面层增强大气冷却
- 批准号:
23K04652 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Q-dot-Glass based Thermoelectric Cooling (Q-Dot-TEC) by Thermal Energy Harvesting
基于 Q-dot-Glass 的热能收集热电冷却 (Q-Dot-TEC)
- 批准号:
EP/X032612/1 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Fellowship
Global Centers Track 2: Center for Household Energy and Thermal Resilience (HEaTR)
全球中心轨道 2:家庭能源和热恢复中心 (HEaTR)
- 批准号:
2330533 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: Thermal Drawing of Composite Fibers for Wearable Energy Storage Textiles
合作研究:可穿戴储能纺织品复合纤维的热拉伸
- 批准号:
2330670 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Development of Si-based phase change materials at ultra-high temperature for high-efficiency thermal energy storage systems
开发用于高效热能存储系统的超高温硅基相变材料
- 批准号:
23KJ0032 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




