“Autonomous Flying Fire Blanket”: New Adaptive And Learning Architectures For Multi-UAV Cooperative Formation With Firefighting Applications

– 自主飞行消防毯 –:用于消防应用的多无人机协作编队的新自适应和学习架构

基本信息

  • 批准号:
    2131802
  • 负责人:
  • 金额:
    $ 28.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Fires cause significant damage in the United States every year. Unmanned aerial vehicles have been increasingly used in fire fighting and prevention tasks. However, current firefighting aerial vehicles suffer from several limitations and constraints, including complex designs of the platforms, limited tank capacity and flow rate for the suppressant fluid, and high costs. This project aims to develop a new “autonomous flying fire blanket” system, using a team of relatively simple and cheap unmanned aerial vehicles to collaboratively tether a fire blanket to be dropped at a designated place. This system puts a high demand on the safe, precise, and resilient operations of the aerial vehicle team. The intellectual merits of the project include new adaptive and learning cooperative formation architecture designs that will significantly advance the current state-of-the-art in cooperative control algorithms. The broader impacts of the project include collaboration with the industry, our Lexington Fire Department, and Kentucky Division of Forestry, on the designs and verifications of the system, and on promoting the system for real-world fire fighting and prevention. This project will advance research and educational experiences for K-12 and undergraduate students including underrepresented students. A graduate course on intelligent control methods will be developed based on the research findings of this project. The goal of this project is to develop new adaptive and learning architectures for physically interconnected unmanned aerial vehicles to ensure safe, precise, and resilient operations. Major technical challenges to be addressed include: (1) satisfying multiple formation constraint requirements that are time and path dependent; (2) adaptation and learning under varying operation conditions over both the time and iteration domain; and (3) resilient designs in the face of potential malfunctioning at the fire scene. Current cooperative control algorithms mostly focus on constant or time-varying constraint requirements, which often require more aggressive kinematic behavior that can potentially cause actuation saturation. The geometric and spatial nature of the constraint requirements is often overlooked, largely due to difficulties in integrating time-domain system kinematics with path-domain constraints. Moreover, existing works can at best deal with adaption or learning over either the time or iteration axis. Unified structures to learn and adapt over both the time and iteration domain have not been addressed in the literature. Furthermore, existing cooperative formation algorithms often ignore any malfunctioning of the physically interconnected agents during constrained operations. To address these challenges, we will use barrier Lyapunov analysis and a new framework of composite energy function discussion, to develop new adaptive and learning cooperative formation architectures based on universal barrier functions, adaptive learning structures, and resilient control framework designs, while taking unknown external payloads, system nonlinearities, and external disturbances into considerations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
火灾每年在美国造成重大损失。无人驾驶飞行器越来越多地用于灭火和预防任务。然而,当前的消防飞行器受到若干限制和约束,包括平台的复杂设计、用于灭火剂流体的有限的罐容量和流速以及高成本。该项目旨在开发一种新的“自主飞行灭火毯”系统,使用一组相对简单和廉价的无人驾驶飞行器协同系留灭火毯,将其投放到指定地点。该系统对飞行器团队的安全,精确和弹性操作提出了很高的要求。该项目的智力优势包括新的自适应和学习的合作形成架构的设计,将显着推进目前的合作控制算法的最先进的。该项目的更广泛影响包括与行业、我们的列克星敦消防局和肯塔基州林业部门合作,设计和验证该系统,并推广该系统用于现实世界的消防和预防。该项目将推进K-12和本科生(包括代表性不足的学生)的研究和教育经验。将根据本项目的研究成果,开发智能控制方法的研究生课程。该项目的目标是为物理互连的无人机开发新的自适应和学习架构,以确保安全,精确和弹性操作。要解决的主要技术挑战包括:(1)满足时间和路径相关的多个编队约束要求;(2)在时间和迭代域上变化的操作条件下的适应和学习;以及(3)面对火灾现场潜在故障的弹性设计。目前的协同控制算法大多集中在恒定或时变的约束要求,这往往需要更积极的运动行为,可能会导致驱动饱和。约束要求的几何和空间性质常常被忽视,主要是由于难以将时域系统运动学与路径域约束相结合。此外,现有的作品最多只能处理时间轴或迭代轴上的适应或学习。统一的结构,学习和适应的时间和迭代域还没有在文献中。此外,现有的合作形成算法往往忽略任何故障的物理互连代理在约束操作。为了解决这些挑战,我们将使用障碍李雅普诺夫分析和复合能量函数讨论的新框架,开发基于通用障碍函数,自适应学习结构和弹性控制框架设计的新的自适应和学习合作编队架构,同时考虑未知的外部有效载荷,系统非线性,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attacker-Resilient Adaptive Path Following of a Quadrotor with Dynamic Path-Dependent Constraints
Adaptive formation control architectures for a team of quadrotors with multiple performance and safety constraints
Formation-Based Decentralized Iterative Learning Cooperative Impedance Control for a Team of Robot Manipulators
Formation Control for an UAV Team With Environment-Aware Dynamic Constraints
Cooperative Constrained Enclosing Control of Multirobot Systems in Obstacle Environments
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu Jin其他文献

VAUT: a visual analytics system of spatiotemporal urban topics in reviews
VAUT:评论中时空城市主题的可视化分析系统
  • DOI:
    10.1007/s12650-017-0464-0
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Xu Jin;Tao Yubo;Yan Yuyu;Lin Hai
  • 通讯作者:
    Lin Hai
Adaptive iterative learning control for high-order nonlinear multi-agent systems consensus tracking
  • DOI:
    10.1016/j.sysconle.2015.12.009
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu Jin
  • 通讯作者:
    Xu Jin
Changes of Water/Ice Morphological, Thermodynamic, and Mechanical Parameters During the Freezing Process
冻结过程中水/冰形态、热力学和力学参数的变化
  • DOI:
    10.1007/s13369-021-05502-0
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Cong Qian;Xu Jin;Ren Luquan;Jin Jingfu;Chen Tingkun;Choy Kwang Leong
  • 通讯作者:
    Choy Kwang Leong
Continuous-flow polymerase chain reaction microfluidics based on polytetrafluoethylene capillary
基于聚四氟乙烯毛细管的连续流聚合酶链反应微流控
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang Chunsun;Xu Jin;Wang Jianqin;Wan Hanping
  • 通讯作者:
    Wan Hanping

Xu Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xu Jin', 18)}}的其他基金

CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
  • 批准号:
    2336189
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Standard Grant
Night flying fauna and utilization of airspace niches
夜间飞行动物群和空域生态位的利用
  • 批准号:
    23K18545
  • 财政年份:
    2023
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Ultra-Precision Formation Flying in Earth Orbit: Exploring Astrodynamics
地球轨道超精密编队飞行:探索天体动力学
  • 批准号:
    23K13501
  • 财政年份:
    2023
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BRC-BIO: Understanding the Role of Species Interactions in Evolutionary Radiations Through the Evolution of Non-flying Mammal Pollination in the Iconic Plant Genus Protea
BRC-BIO:通过标志性植物普罗蒂亚属非飞行哺乳动物授粉的进化来了解物种相互作用在进化辐射中的作用
  • 批准号:
    2233118
  • 财政年份:
    2023
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Standard Grant
Innovative Developments of Flying Mobility Pioneered by Wireless Power Transfer and Motion Control Technologies
无线电力传输和运动控制技术引领的飞行出行创新发展
  • 批准号:
    23H00175
  • 财政年份:
    2023
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research & Development of Superconducting Induction Motors with High-Power Density for Flying cars
研究
  • 批准号:
    23H00187
  • 财政年份:
    2023
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Realization of General Relativistic Flying Mirrors using a high-intensity, ultra-short pulse laser
使用高强度、超短脉冲激光实现广义相对论飞镜
  • 批准号:
    23H01151
  • 财政年份:
    2023
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Flying High for New Careers in Aviation Technology
航空技术新职业展翅高飞
  • 批准号:
    2202205
  • 财政年份:
    2022
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Standard Grant
Passive Positioning and Tracking of Flying Objects Using Satellite Signals
利用卫星信号对飞行物体进行无源定位和跟踪
  • 批准号:
    DP220101894
  • 财政年份:
    2022
  • 资助金额:
    $ 28.91万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了