CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
基本信息
- 批准号:2336189
- 负责人:
- 金额:$ 54.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-15 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are increasing threats from unauthorized and malicious drones with research and industry communities looking for solutions. However, current anti-drone techniques are often prone to failure, not cost effective, or could affect legitimate nearby aircraft. This proposal develops a Multi-UAV Drone Catch Net (MUCH-Net) system that uses a team of low-cost autonomous unmanned aerial vehicles to collaboratively tether a catch net to capture the target drone. This new system puts a high demand on the safe operations of the aerial vehicle team using a learning-based cooperative formation architecture design with environment-aware adaptive safety constraints. The broader impacts of the project include (a) a concept design contest for high-school pre-engineering program students, (b) a robot capture game competition, which involve women and underrepresented students, (c) a robotic program for K-12 teachers, (d) promotion of exploratory learning assignments in undergraduate teaching, (e) a new graduate course on safety-critical intelligent multiagent systems, (f) and collaborations with industry partners to facilitate research development, verification, assessment, and technology transfer.This CAREER project aims to make fundamental contributions to theories of learning-based cooperative control with new environment-aware adaptive safety analysis. Major technical challenges include: (a) due to the complex operating environment, the safety considerations are environment-aware and adaptive; and (b) for multiagent systems, the multiple safety requirements considered can be conflicting with each other or with the initial system state. Existing safety-critical control algorithms for multiagent systems only address constant or time-varying safety sets, which cannot dynamically adapt to the environment, and cannot address safety conflicts. The research investigates learning-based cooperative control architectures to address environment-aware adaptive safety requirements for multiagent systems. An integrated barrier function structure that integrates a cooperative dynamic deep neural network to learn the dynamics of a multi-dimension environment parameter and unknown target velocity is proposed. Safety conflicts are addressed by integrating initial state and virtual barriers into the integrated barrier functions, with indicator functions incorporated to modify the less critical (“soft”) safety sets, in order to guarantee the more critical (“hard”) safety requirements. The proposed architectures are widely applicable to many applications with multiagent systems operating in complex environments. This project is jointly funded by the Electrical, Communications and Cyber Systems Division (ECCS) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自未经授权和恶意无人机的威胁越来越多,研究和行业社区正在寻找解决方案。然而,目前的反无人机技术往往容易失败,不符合成本效益,或者可能影响附近的合法飞机。该提案开发了一种多无人机无人机捕网(MUCH-Net)系统,该系统使用一组低成本的自主无人机协同系住捕网以捕获目标无人机。该系统采用基于学习的协同编队体系结构设计,并结合环境感知的自适应安全约束,对飞行器团队的安全操作提出了更高的要求。该项目的更广泛影响包括:(a)为高中工程预科课程学生举办概念设计竞赛,(B)举办机器人捕捉游戏竞赛,涉及妇女和代表性不足的学生,(c)为K-12教师举办机器人方案,(d)促进本科教学中的探索性学习作业,(e)开设关于安全关键智能多主体系统的新研究生课程,(f)与业界伙伴合作,以促进研究发展、验证、评估和技术转让。该CAREER项目旨在通过新的环境感知自适应安全分析,为基于学习的合作控制理论做出基本贡献。主要的技术挑战包括:(a)由于复杂的操作环境,安全考虑是环境感知和自适应的;以及(B)对于多代理系统,所考虑的多个安全要求可能彼此冲突或与初始系统状态冲突。现有的多智能体系统的安全关键控制算法只能解决恒定或时变的安全集,不能动态地适应环境,不能解决安全冲突。研究基于学习的协同控制架构,以解决环境感知的自适应安全多智能体系统的要求。提出了一种集成障碍函数结构,该结构集成了协作动态深度神经网络来学习多维环境参数和未知目标速度的动态。通过将初始状态和虚拟屏障集成到集成屏障功能中来解决安全冲突,并结合指示器功能来修改不太关键的(“软”)安全集,以保证更关键的(“硬”)安全要求。所提出的架构是广泛适用于许多应用程序与多智能体系统在复杂的环境中运行。该项目由电气、通信和网络系统部(ECCS)和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xu Jin其他文献
Soil Fertility Investigation and Quality Assesment in Taicang──Changes of Soil pH,Organic Matter,Total-N,Available-P,Rapidly-Available-K and CEC
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Xu Jin - 通讯作者:
Xu Jin
VAUT: a visual analytics system of spatiotemporal urban topics in reviews
VAUT:评论中时空城市主题的可视化分析系统
- DOI:
10.1007/s12650-017-0464-0 - 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Xu Jin;Tao Yubo;Yan Yuyu;Lin Hai - 通讯作者:
Lin Hai
Adaptive iterative learning control for high-order nonlinear multi-agent systems consensus tracking
- DOI:
10.1016/j.sysconle.2015.12.009 - 发表时间:
2016-03 - 期刊:
- 影响因子:0
- 作者:
Xu Jin - 通讯作者:
Xu Jin
Changes of Water/Ice Morphological, Thermodynamic, and Mechanical Parameters During the Freezing Process
冻结过程中水/冰形态、热力学和力学参数的变化
- DOI:
10.1007/s13369-021-05502-0 - 发表时间:
2021-03 - 期刊:
- 影响因子:2.9
- 作者:
Cong Qian;Xu Jin;Ren Luquan;Jin Jingfu;Chen Tingkun;Choy Kwang Leong - 通讯作者:
Choy Kwang Leong
Continuous-flow polymerase chain reaction microfluidics based on polytetrafluoethylene capillary
基于聚四氟乙烯毛细管的连续流聚合酶链反应微流控
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Zhang Chunsun;Xu Jin;Wang Jianqin;Wan Hanping - 通讯作者:
Wan Hanping
Xu Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xu Jin', 18)}}的其他基金
“Autonomous Flying Fire Blanket”: New Adaptive And Learning Architectures For Multi-UAV Cooperative Formation With Firefighting Applications
– 自主飞行消防毯 –:用于消防应用的多无人机协作编队的新自适应和学习架构
- 批准号:
2131802 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
Standard Grant
相似海外基金
ERI: Towards Environment-Aware Wireless Communications for Next Generation Networks
ERI:迈向下一代网络的环境感知无线通信
- 批准号:
2243089 - 财政年份:2023
- 资助金额:
$ 54.27万 - 项目类别:
Standard Grant
Towards the life-cycle sustainability in construction: A Digital twin approach 1=Built environment 2=Digital economy
实现建筑生命周期的可持续性:数字孪生方法 1=建筑环境 2=数字经济
- 批准号:
2871816 - 财政年份:2023
- 资助金额:
$ 54.27万 - 项目类别:
Studentship
DigiBUILD: High-Quality Data-Driven Services for a Digital Built Environment towards a Climate-Neutral Building Stock
DigiBUILD:为数字化建筑环境提供高质量的数据驱动服务,打造气候中性的建筑群
- 批准号:
10040988 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
EU-Funded
Towards the development of approaches to protection of the environment around SMRs
制定中小型反应堆周围环境保护的方法
- 批准号:
580468-2022 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
Alliance Grants
Characterizing novel Beta-lactamases from metagenomic samples: insights into the evolution of antimicrobial resistance from the environment towards human-associated pathogens
从宏基因组样本中表征新型 β-内酰胺酶:深入了解从环境到人类相关病原体的抗菌药物耐药性的演变
- 批准号:
10450287 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
Self-Healing Polymers in Complex Water Matrices: Towards Smart Materials for the Environment
复杂水基质中的自修复聚合物:迈向环境智能材料
- 批准号:
2201361 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
Standard Grant
Towards Understanding How the Solution Environment Impacts Crystal Morphology
了解解决方案环境如何影响晶体形态
- 批准号:
2751358 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
Studentship
Towards a Cleaner Environment: Smart Grid Management in the Presence of Electric Vehiecles, Renewable Energy Sources, and Storage
迈向更清洁的环境:电动汽车、可再生能源和存储的智能电网管理
- 批准号:
577133-2022 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
Alliance Grants
Personalizing thermal environment using digital technologies: towards greater occupant wellbeing and decarbonization of buildings
使用数字技术个性化热环境:提高居住者的福祉和建筑物的脱碳
- 批准号:
DGECR-2022-00487 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
Discovery Launch Supplement
Smart indoor Spaces (SiS): Towards an Integrated Framework for the Internet of Things in the Built Environment
智能室内空间(SiS):构建建筑环境中物联网的集成框架
- 批准号:
RGPIN-2020-05033 - 财政年份:2022
- 资助金额:
$ 54.27万 - 项目类别:
Discovery Grants Program - Individual