CAREER: Statistical Inference of Tail Dependent Time Series
职业:尾部相关时间序列的统计推断
基本信息
- 批准号:2131821
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop a new theoretical framework and statistical inference methods for the analysis of tail dependent time series, and to educate future statisticians and data scientists on its theory and practice. Tail dependent time series, as an emerging data type, has been observed and recognized in various fields including actuarial science, climate science, economics, finance, hydrology, and internet traffic engineering, among others. The task of understanding and appropriately accommodating the phenomenon of tail dependence can be of significant importance to the modeling of extreme events such as earthquakes, hurricanes, and financial crises. The results from the project will make significant impacts in scientific areas such as climate science, economics, actuarial science, finance, hydrology and internet traffic engineering. The proposal also involves an integrated education plan to expose undergraduate and high school students to the topic, to equip graduate and advanced undergraduate students with a desirable level of statistical reasoning and analytical skills for analyzing tail dependent time series, and to mentor doctoral students to become future leaders in the education and research of the area. Existing methods for studying tail dependent time series often rely on certain parametric models for describing the underlying tail dependence structure. This is particularly due to the lack of a convenient and rigorous framework that one can use to obtain desired limit theorems for a general class of tail dependent time series. The project aims to address this fundamental problem by proposing a new framework based on the causal representation and the technique of adversarial tail coupling. Using the newly proposed framework, the project will develop meaningful results toward a tail m-dependent approximation scheme, which can then be used as a powerful tool to obtain limit theorems for statistics of tail dependent data. Compared with the conventional m-dependent approximation, the current setting can be more challenging due to the double asymptotics where the quantile index is allowed to approach either zero or one as the sample size increases to reflect extreme risks. The project will study several statistical inference problems for tail dependent time series, including high quantile estimation and its associated confidence interval construction, tail dependence visualization and testing, inference of extremely high quantiles using the extreme value theory, extensions to high and extremely high quantile regression models, and high-dimensional nonstationary settings. The results to be developed are expected to be useful in identifying undiscovered features in certain climate science and economic data, and applicable to other scientific problems that involve the analysis of tail dependent time series.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发一种新的理论框架和统计推断方法,以分析依赖尾部的时间序列,并教育未来的统计学家和数据科学家的理论和实践。作为一种新兴数据类型,在包括精算科学,气候科学,经济学,金融,水文学和互联网交通工程等各个领域都观察到并认可了尾巴依赖的时间序列。理解和适当适应尾巴依赖现象的任务对于地震,飓风和金融危机等极端事件的建模至关重要。该项目的结果将对气候科学,经济学,精算科学,金融,水文和互联网交通工程等科学领域产生重大影响。该提案还涉及一项综合的教育计划,以使本科和高中生接触该主题,为研究生和高级本科生配备理想水平的统计推理和分析技能,以分析依赖尾巴的时间序列,并指导博士生成为该领域教育和研究的未来领导者。研究依赖尾部时间序列的现有方法通常依赖于某些参数模型来描述潜在的尾部依赖结构。这尤其是由于缺乏方便且严格的框架,可以用来为一般的尾巴依赖时间序列获得所需的限制定理。该项目旨在通过提出基于因果关系和对抗尾耦合技术的新框架来解决这个基本问题。使用新提出的框架,该项目将针对尾部M依赖性近似方案开发有意义的结果,然后可以将其用作有力的工具,以获取限制尾部依赖数据统计的定理。与传统的M依赖性近似相比,由于允许分位数指数允许零或一个接近零或一个,随着样本量增加以反映极端风险,当前设置可能更具挑战性。该项目将研究有关尾部依赖时间序列的几个统计推断问题,包括高分位数估计及其相关的置信区间构建,使用极值理论的尾巴依赖性可视化和测试,对极高的分位数的推断,对高分位数回归模型的扩展以及高维度的非量度非机构环境。预计要开发的结果将有助于确定某些气候科学和经济数据中未发现的特征,并适用于其他科学问题,涉及涉及尾部依赖时间序列的分析。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Stratified Penalized Kernel Method for Semiparametric Variable Labeling and Estimation of Multi-Output Time-Varying Coefficient Models for Nonstationary Time Series
非平稳时间序列半参数变量标记和多输出时变系数模型估计的分层惩罚核方法
- DOI:10.5705/ss.202021.0078
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Zhang, Ting;Wang, Weiliang;Shao, Yu
- 通讯作者:Shao, Yu
High-quantile regression for tail-dependent time series
- DOI:10.1093/biomet/asaa046
- 发表时间:2020-07
- 期刊:
- 影响因子:2.7
- 作者:Ting Zhang
- 通讯作者:Ting Zhang
Asymptotics of sample tail autocorrelations for tail-dependent time series: phase transition and visualization
尾部相关时间序列样本尾部自相关的渐近:相变和可视化
- DOI:10.1093/biomet/asab038
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Zhang, Ting
- 通讯作者:Zhang, Ting
Estimating change-point latent factor models for high-dimensional time series
- DOI:10.1016/j.jspi.2021.07.006
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Xialu Liu;Ting Zhang
- 通讯作者:Xialu Liu;Ting Zhang
Tail Spectral Density Estimation and Its Uncertainty Quantification: Another Look at Tail Dependent Time Series Analysis
- DOI:10.1080/01621459.2023.2197159
- 发表时间:2023-03
- 期刊:
- 影响因子:3.7
- 作者:Ting Zhang;Beibei Xu
- 通讯作者:Ting Zhang;Beibei Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting Zhang其他文献
Absorption spectroscopy of ethylene near 1.62 µm at high temperatures
高温下 1.62 µm 附近乙烯的吸收光谱
- DOI:
10.1016/j.jqsrt.2019.106748 - 发表时间:
2020 - 期刊:
- 影响因子:2.3
- 作者:
Gang Zhang;Guangzhen Gao;Ting Zhang;Xin Liu;Changde Peng;Tingdong Cai - 通讯作者:
Tingdong Cai
A study on the relationships among green finance, environmental pollution and economic development
绿色金融、环境污染与经济发展关系研究
- DOI:
10.1016/j.esr.2023.101290 - 发表时间:
2024 - 期刊:
- 影响因子:8.2
- 作者:
Ting Zhang;Fanzhen Zhao - 通讯作者:
Fanzhen Zhao
Asymptotic Behavior of Optimal Weighting in Generalized Self‐Normalization for Time Series
时间序列广义自归一化中最优权重的渐近行为
- DOI:
10.1111/jtsa.12472 - 发表时间:
2019 - 期刊:
- 影响因子:0.9
- 作者:
Ting Zhang;Liliya Lavitas;Qiao Pan - 通讯作者:
Qiao Pan
Snapshot-deficient active target localization in beam-time domain using multi-frequency expectation-maximization algorithm.
使用多频率期望最大化算法在波束时域中进行快照缺陷主动目标定位。
- DOI:
10.1121/10.0017164 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
He Wang;Ting Zhang;Lei Cheng;Hangfang Zhao - 通讯作者:
Hangfang Zhao
On the well-posedness for stochastic fourth-order Schrödinger equations
随机四阶薛定谔方程的适定性
- DOI:
10.1007/s11766-011-2740-4 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
D. Fang;Linzi Zhang;Ting Zhang - 通讯作者:
Ting Zhang
Ting Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting Zhang', 18)}}的其他基金
CAREER: Statistical Inference of Tail Dependent Time Series
职业:尾部相关时间序列的统计推断
- 批准号:
1848035 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Nonparametric Inference of Nonstationary Time Series
非平稳时间序列的非参数推理
- 批准号:
1461796 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Nonparametric Inference of Nonstationary Time Series
非平稳时间序列的非参数推理
- 批准号:
1405685 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
极大孔径多天线系统基于结构化统计推理的非平稳信道估计和干扰抑制技术
- 批准号:62101472
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
极大孔径多天线系统基于结构化统计推理的非平稳信道估计和干扰抑制技术
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能推理的逻辑增强型分布式知识表示研究
- 批准号:61876223
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
基于统计的类型推理方法研究
- 批准号:61872272
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
面向大规模演化异质信息网络的未知关系学习与推理研究
- 批准号:61876183
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
- 批准号:
2338464 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
- 批准号:
2239234 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant