EFRI E3P: Engineering Suspension Feeder Systems for Separation and Elimination of Microplastics from Water
EFRI E3P:用于分离和消除水中微塑料的工程悬浮给料系统
基本信息
- 批准号:2029428
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plastic contamination in the environment is a pervasive global problem with no obvious solutions. Environmental plastics are predominantly comprised of tiny pieces less than five millimeters in length. These so-called “microplastics” (or “MPs”) are now found in nearly every environment on Earth, including inside humans and animals, and their future health impacts and ecological consequences are unknown. This research project aims to create safe, efficient, and cost-effective technology to separate and eliminate MPs from wastewater. Outflows from wastewater treatment plants (WWTPs) are a major source of environmental MPs. Taking inspiration from nature, this project will employ freshwater mussels grown by the thousands in tanks to quickly and efficiently filter large volumes of wastewater. When drawing in wastewater for feeding, the mussels will combine the MPs in the wastewater with special bacteria capable of breaking down and destroying the plastic, transforming MPs back into small, naturally-occurring organic molecules. The bacteria and the MP breakdown products will be tested so that nothing harmful is released into the environment. Throughout the project, the team will engage with WWTP operators and state regulators to make sure the technology being developed is practical to implement. In parallel with lab- and pilot-scale technology development, a mathematical model representing a full-scale WWTP system including technical, economic, and social components will be developed. The model will be used for benchmarking and scenario exploration to give decision-makers clear, quantitative answers to the questions: how can our existing WWTP be modified, considering both traditional and novel technologies? what pollution prevention benefits would be achieved and at what cost? The project's focus on existing WWTP infrastructure will allow scientists and engineers to make a large impact with a relatively small investment. Led by a team of 10 scientists and engineers from two universities, the project will also train dozens of graduate and undergraduate students in sustainable biotechnology and will proactively engage students from underrepresented and disadvantaged communities. Multiple outreach and education activities will engage the support and imagination of thousands of K-12 students, teachers, and members of the public.The objective of this project is to separate and eliminate microplastics (MPs) from wastewater treatment plant (WWTP) effluent. WWTP effluent is the source for approximately half of the MPs now in the environment, and WWTPs can be modified to economically prevent MP pollution of receiving waters. The approach of this project is to employ suspension-feeding aquatic bivalves to efficiently separate and concentrate MPs from water. Further, by co-concentrating MPs with certain MP-degrading bacteria, MP bioavailability will be enhanced. Microbially-mediated depolymerization will be achieved by leveraging the team’s existing collection of 1000 microbial cultures isolated from MPs in aquatic environments, some of which have already been shown to degrade certain plastics. This collection will be augmented by additional strains collected from the WWTP at the University of Connecticut, which will serve as a living laboratory for the project. The scope of the project will encompass both particulate and fibrous forms of polyhydroxybutyrate (PHB), a more readily-degraded polyester, as well as polyethylene (PE) and polyethylene terephthalate (PET), which are more recalcitrant; all are common environmental MPs. To achieve depolymerization of even the more recalcitrant MPs, biodeposits from mussels will be further processed in a microbially-driven Fenton bioreactor, and a complementary gradient microfluidic approach will be used to identify the optimal reaction conditions. At each stage of development, performance metrics will be quantified, alongside fundamental physiochemical properties, to inform a techno-economic optimization of a full-scale WWTP system that also incorporates a cost model for the socio-technical drivers/barriers to technology adoption. The expected outcomes of this project include (i) a detailed understanding of the fate of MPs in a model WWTP; (ii) practical, scalable processes to concentrate and eliminate MPs from wastewater, and (iii) decision tools to drive broad adoption of this MP separation and elimination technology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
环境中的塑料污染是一个普遍存在的全球性问题,没有明显的解决方案。环保塑料主要由长度不到5毫米的小块组成。这些所谓的“微塑料”(或“MPS”)现在几乎存在于地球上的每一个环境中,包括人类和动物体内,它们未来对健康的影响和生态后果是未知的。这项研究项目旨在创造安全、高效、经济的技术来分离和消除废水中的MPS。污水处理厂(WWTP)的排放是环境MPS的主要来源。从大自然中获得灵感,该项目将使用数以千计的淡水贻贝在水箱中生长,以快速高效地过滤大量废水。当将废水引入饲料时,贻贝会将废水中的MPS与能够分解和破坏塑料的特殊细菌结合起来,将MPS转化回自然产生的小有机分子。细菌和MP分解产物将进行测试,这样就不会向环境中释放任何有害物质。在整个项目中,该团队将与WWTP运营商和州监管机构接触,以确保正在开发的技术切实可行。与实验室和中试规模的技术开发并行,将开发一个代表包括技术、经济和社会组成部分的全面污水处理系统的数学模型。该模型将用于基准和情景探索,为决策者提供明确、定量的答案:考虑到传统和新技术,如何修改我们现有的污水处理厂?污染预防将会带来什么好处,代价是什么?该项目的重点是现有的污水处理厂基础设施,这将使科学家和工程师能够用相对较小的投资产生巨大的影响。该项目由来自两所大学的10名科学家和工程师领导,还将对数十名研究生和本科生进行可持续生物技术方面的培训,并将积极吸引来自代表性不足和弱势社区的学生。多项外展和教育活动将吸引数以千计的K-12学生、教师和公众的支持和想象力。该项目的目标是分离和消除污水处理厂(WWTP)污水中的微塑料(MPS)。污水处理厂的污水是目前环境中大约一半的MP的来源,可以对污水处理厂进行改造,以经济地防止MP对接收水的污染。该项目的方法是利用悬浮投喂的水生双壳贝类来有效地从水中分离和浓缩MPS。此外,通过将MPS与某些MP降解菌共浓缩,MP的生物利用度将得到提高。微生物介导的解聚将通过利用该团队现有的1000种微生物培养物来实现,这些微生物培养物是从水环境中的MPS中分离出来的,其中一些已经被证明可以降解某些塑料。从康涅狄格大学污水处理厂收集的更多菌株将扩大这一收集范围,该实验室将作为该项目的活实验室。该项目的范围将包括颗粒状和纤维状的聚羟基丁酸酯(PHB),一种更容易降解的聚酯,以及聚乙烯(PE)和聚对苯二甲酸乙二醇酯(PET),它们更顽固;所有这些都是常见的环境MPS。为了实现即使是更顽固的MPS的解聚,贻贝的生物沉积物将在微生物驱动的Fenton生物反应器中进一步处理,并将使用互补梯度微流控方法来确定最佳反应条件。在开发的每个阶段,性能指标将与基本的物理化学特性一起被量化,以告知全面污水处理厂系统的技术经济优化,该系统还纳入了技术采用的社会技术驱动因素/障碍的成本模型。该项目的预期成果包括(I)详细了解MPS在模型污水处理厂中的命运;(Ii)从废水中浓缩和消除MPS的实用、可扩展的过程,以及(Iii)推动MP分离和消除技术的广泛采用的决策工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regression modeling of combined sewer overflows to assess system performance
合并下水道溢流的回归建模以评估系统性能
- DOI:10.2166/wst.2022.362
- 发表时间:2022
- 期刊:
- 影响因子:2.7
- 作者:A. Bizer, Matthew;Kirchhoff, Christine J.
- 通讯作者:Kirchhoff, Christine J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie Shor其他文献
Understanding the retention of microplastics in wastewater treatment plants: Insights from tracer tests and numerical modeling
理解微塑料在废水处理厂中的保留:示踪试验和数值模拟的见解
- DOI:
10.1016/j.envres.2025.122256 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:7.700
- 作者:
Ishrat Rashid;Amvrossios Bagtzoglou;Zhiyuan Zhao;Khaled Djebbari;Mikayla Morris;Daniel Gage;Leslie Shor;Baikun Li - 通讯作者:
Baikun Li
Leslie Shor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leslie Shor', 18)}}的其他基金
Collaborative Research: SusChEM: Root-Targeted Delivery of Encapsulated Agrochemicals using Natural Microbial Carriers
合作研究:SusChEM:利用天然微生物载体定向递送封装农用化学品
- 批准号:
1605624 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
NUE ASCCEND: Addressing Social Challenges through Creativity, Engineering, Nanotechnology, and Diversity
NUE ASCCEND:通过创造力、工程、纳米技术和多样性应对社会挑战
- 批准号:
1242167 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EAGER: Field-Deployed Microfluidic Trap Array for Discovery and Observation of Microbial Eukaryotes
EAGER:用于发现和观察微生物真核生物的现场部署微流控陷阱阵列
- 批准号:
1027125 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI E3P: Supercritical Extraction for the Elimination of End-of-Life Plastics (SCE3P)
EFRI E3P:超临界萃取消除报废塑料 (SCE3P)
- 批准号:
2132093 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Hydrogenolysis for upcycling of polyesters and mixed plastics
EFRI E3P:用于聚酯和混合塑料升级改造的氢解
- 批准号:
2132033 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: GOALI: Waste Management and Circularity of Crosslinked Polyurethane Foams
EFRI E3P:GOALI:废物管理和交联聚氨酯泡沫的循环利用
- 批准号:
2132183 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Nonthermal Plasma-Assisted Hydrogenolysis of Waste Plastics to Value-added Chemicals and Fuels
EFRI E3P:废塑料非热等离子体辅助氢解转化为增值化学品和燃料
- 批准号:
2132178 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
EFRI E3P: Tuning Catalyst Design to Recycle Mixed Polymer Streams
EFRI E3P:调整催化剂设计以回收混合聚合物流
- 批准号:
2029394 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: End of Life Plastics as Starting Materials for Filtration and Barrier Applications
EFRI E3P:报废塑料作为过滤和屏障应用的起始材料
- 批准号:
2029387 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: Program plastic lifecycle by rationally design enzyme-containing plastics
EFRI E3P:通过合理设计含酶塑料来规划塑料生命周期
- 批准号:
2132025 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: CAS: Transformative Upcycling of Polymers by Activating Chemistries
EFRI E3P:CAS:通过活化化学物质实现聚合物的转型升级循环
- 批准号:
2132133 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: High-throughput synthetic biology approaches for mixed plastic degradation and reutilization
EFRI E3P:混合塑料降解和再利用的高通量合成生物学方法
- 批准号:
2132156 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI E3P: A novel sequential catalytic solvolysis process for deconstructing municipal waste plastics
EFRI E3P:一种用于解构城市废塑料的新型连续催化溶剂分解工艺
- 批准号:
2132219 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant