EAGER: SUPER: Light and Warm Superconducting Interfaces

EAGER:SUPER:轻而温暖的超导接口

基本信息

  • 批准号:
    2132389
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYRecent research has outlined a possible pathway to room-temperature superconductivity based on hydrogen-rich materials exposed to very high pressures, which would be a transformative technological development. The required high pressures (similar to those at the Earth’s core) present major technical challenges for practical use and applications. In this project, a new approach is proposed in which hydrogen-rich “quantum” materials are designed which could exhibit high-temperature superconductivity without the application of pressure. This project, supported by the NSF’s Division of Materials Research, is to synthesize multi layers of a quantum material, a photosensitive material, and a hydrogen-rich material, which under the right conditions would favor high-temperature superconductivity. From an educational standpoint, this project exposes students to modern condensed matter physics, to state-of-the-art experimental and calculational tools, to materials synthesis and characterization techniques, and to the scientific research process. The research team assembled here has a long-standing interest and record of outreach activities that showcase the beauty and importance of quantum materials, superconductivity and modern solid-state physics. The PIs, two of which are Hispanics, are engaged in fostering diversity and inclusion in the technological work force and also in encouraging underrepresented groups to pursue careers in physics and STEM disciplines. From the societal standpoint, this research contributes important clues about the mechanism of high-temperature superconductivity and its potential applications. A better understanding of this phenomenon may lead to materials with higher superconducting transition temperatures, which would yield important technological benefits to the nation. This would substantially improve the transference and storage of energy, create new forms of environmentally friendly transportation systems, and provide a new platform for novel computational schemes. TECHNICAL SUMMARYThis project, supported by the Division of Materials Research, outlines a new approach in the search for new superconductors based on hydrogen-rich materials. Prior research has claimed the discovery of near-room-temperature superconductivity under very high pressures in hydrogen-rich materials or at very short timescales in photo-excited quantum materials and heterostructures. This project aims to develop high-temperature superconducting heterostructures which are stable at ambient pressure by combining a quantum material (Q-material) with a material which contains a high concentration of hydrogen (H-material). This way, the Q-material contains the charge carriers and the H-material provides the coupling for superconductivity. This judiciously designed heterostructure combines the favorable properties of both ingredients and may exhibit novel properties as a whole or at the interface. In addition, to boost the superconducting properties such as the charge carrier doping, a hybrid heterostructure containing a photoconducting material subject to the appropriate electromagnetic radiation will be used. The combination of these thoroughly investigated individual materials and phenomena provide a potential path towards room temperature superconductivity at ambient pressure. From an educational standpoint, this project exposes students to many aspects of modern condensed matter physics, to state-of-the-art experimental and calculation tools, to materials synthesis and characterization techniques, and to the process of scientific research and publication. The research team assembled here has a long-standing interest and record of involvement in various outreach activities that showcase the beauty and importance of quantum materials, superconductivity and modern solid-state physics. The PIs, two of which are Hispanics, are engaged in fostering diversity and inclusion in the technological work force and also in encouraging underrepresented groups to pursue careers in physics and STEM disciplines. From the societal standpoint, this research contributes important clues about the mechanism of high-temperature superconductivity and its potential applications. A better understanding of this phenomenon will lead to materials with higher superconducting transition temperatures, which, along with other technological applications, would substantially impact the transport and storage of energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的研究概述了一种基于暴露在非常高的压力下的富氢材料的室温超导性的可能途径,这将是一种变革性的技术发展。所需的高压(类似于地球核心的压力)对实际使用和应用提出了重大的技术挑战。在这个项目中,提出了一种新的方法,在这种方法中,富氢的“量子”材料被设计成可以在不施加压力的情况下表现出高温超导性。该项目由美国国家科学基金会材料研究部支持,旨在合成多层量子材料,光敏材料和富氢材料,在适当的条件下,这些材料将有利于高温超导性。从教育的角度来看,该项目使学生接触到现代凝聚态物理学,最先进的实验和计算工具,材料合成和表征技术,以及科学研究过程。聚集在这里的研究团队对展示量子材料,超导性和现代固态物理的美丽和重要性的外联活动有着长期的兴趣和记录。PI,其中两个是西班牙裔,致力于促进技术劳动力的多样性和包容性,并鼓励代表性不足的群体追求物理和STEM学科的职业生涯。从社会的角度来看,这项研究为高温超导机制及其潜在应用提供了重要线索。更好地理解这一现象可能会导致具有更高超导转变温度的材料,这将为国家带来重要的技术利益。这将大大改善能量的转移和储存,创造新形式的环保运输系统,并为新的计算方案提供新的平台。该项目由材料研究部支持,概述了一种基于富氢材料的新超导体的新方法。先前的研究声称在富氢材料中在非常高的压力下或在光激发量子材料和异质结构中在非常短的时间尺度下发现了近室温超导性。该项目旨在通过将量子材料(Q材料)与含有高浓度氢的材料(H材料)相结合,开发在环境压力下稳定的高温超导异质结构。这样,Q材料包含电荷载流子,H材料提供超导性的耦合。这种明智设计的异质结构结合了两种成分的有利性质,并且可以作为整体或在界面处表现出新的性质。此外,为了提高诸如电荷载流子掺杂的超导特性,将使用包含受到适当电磁辐射的光电导材料的混合异质结构。这些经过彻底研究的个别材料和现象的组合提供了在环境压力下实现室温超导性的潜在途径。从教育的角度来看,该项目使学生接触到现代凝聚态物理学的许多方面,最先进的实验和计算工具,材料合成和表征技术,以及科学研究和出版的过程。聚集在这里的研究团队长期以来一直对各种外展活动感兴趣,并有参与这些活动的记录,这些活动展示了量子材料,超导性和现代固态物理学的美丽和重要性。PI,其中两个是西班牙裔,致力于促进技术劳动力的多样性和包容性,并鼓励代表性不足的群体追求物理和STEM学科的职业生涯。从社会的角度来看,这项研究为高温超导机制及其潜在应用提供了重要线索。对这一现象的更好理解将导致具有更高超导转变温度的材料,这沿着其他技术应用,将极大地影响能源的运输和储存。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancement of superconducting transition temperature in Nb/Pd bilayers upon rapid thermal hydrogenation
快速热氢化提高 Nb/Pd 双层超导转变温度
  • DOI:
    10.1103/physrevb.108.104502
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Li, Junjie;Basaran, Ali C.;El Hage, Ralph;Schuller, Ivan K.
  • 通讯作者:
    Schuller, Ivan K.
Electromagnetic origin of the microwave absorption response of Fe3O4 thin films
  • DOI:
    10.1103/physrevb.106.l060402
  • 发表时间:
    2022-08-15
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wampler,James;Hua,Nelson;Schuller,Ivan K.
  • 通讯作者:
    Schuller,Ivan K.
Detection of electromagnetic phase transitions using a helical cavity susceptometer
  • DOI:
    10.1063/5.0136523
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Lapa,Pavel N.;Kassabian,George;Schuller,Ivan K.
  • 通讯作者:
    Schuller,Ivan K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Schuller其他文献

Quantitative Structural and Chemical Analysis of Thin Films: Part II
  • DOI:
    10.1557/s0883769400043402
  • 发表时间:
    2013-11-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Y. Bruynseraede;Ivan Schuller
  • 通讯作者:
    Ivan Schuller
Microwave-induced effects on superconductors
  • DOI:
    10.1007/bf00118713
  • 发表时间:
    1979-08-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    E. D. Dahlberg;R. L. Orbach;Ivan Schuller
  • 通讯作者:
    Ivan Schuller

Ivan Schuller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Schuller', 18)}}的其他基金

COLLABORATIVE RESEARCH: QUANTUM SPIN CHAINS. EXTENT AND PERSISTENCE OF MAGNETIC INTERACTIONS AS A FUNCTION OF LENGTH AND SPIN
合作研究:量子自旋链。
  • 批准号:
    2007316
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: QUANTUM SPIN CHAINS. EXTENT AND PERSISTENCE OF MAGNETIC INTERACTIONS AS A FUNCTION OF LENGTH AND SPIN
合作研究:量子自旋链。
  • 批准号:
    1804414
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: QUANTUM SPIN CHAINS. EXTENT AND PERSISTENCE OF MAGNETIC INTERACTIONS AS A FUNCTION OF LENGTH AND SPIN
合作研究:量子自旋链。
  • 批准号:
    1805585
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Superconducting Pinning with Artificially Prepared Nanostructures
人工制备纳米结构的超导钉扎
  • 批准号:
    0800207
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NSF-Europe: Superconducting Pinning with Artificially Prepared Nanostructures
NSF-Europe:人工制备纳米结构的超导钉扎
  • 批准号:
    0353729
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Exchange Bias: Spin Structure, Interface Disorder and Coupling Mechanisms
交换偏差:自旋结构、界面无序和耦合机制
  • 批准号:
    0071968
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
U.S.-Mexico Workshops on Low Dimensional Systems and Heterostructures; January 1998, Oaxaca, Mexico
美国-墨西哥低维系统和异质结构研讨会;
  • 批准号:
    9724808
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Vortex Pinning in Thin Film Superconductors by Controlled Pinning Structures
通过受控钉扎结构实现薄膜超导体中的涡旋钉扎
  • 批准号:
    9801921
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Interference Effects between Superconducting Vortex Arrays and a Periodic PinningPotential Application to a Frequency-Voltage Converter
美法合作研究:超导涡旋阵列之间的干扰效应和周期性钉扎在频率电压转换器中的潜在应用
  • 批准号:
    9415711
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Dimensionality in Artificially Structured Strongly Correlated Electron Systems
人工结构强相关电子系统中的维数
  • 批准号:
    9317748
  • 财政年份:
    1994
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻 SUPER WOMAN 5 (SPW5) 基因调控花器官发育的分子机制解析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
肌细胞生成素与Super-enhancer互作形成正反馈环路促进肌损伤修复的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
水稻SUPER WOMAN 3 (SPW3) 基因调控花器官发育的分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
水稻SUPER WOMAN 3(SPW3)基因调控花器官发育的分子机制研究
  • 批准号:
    32100287
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于质谱的Super SILAC结合膜富集技术解析镁离子相关蛋白调控网络在Ⅲ型前列腺炎中的作用机制研究
  • 批准号:
    22164007
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
Triptolide通过调控Super-enhancer抑制抗体产生改善抗体介导的移植肾排斥反应
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Super-enhancer驱动的LINC01468通过增强癌基因翻译促进鼻咽癌发生发展的机制研究
  • 批准号:
    2020JJ4838
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
水稻SUPER BRABCH 1基因调控穗发育的分子机制研究
  • 批准号:
    31971919
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Max-plus代数上的super本征问题
  • 批准号:
    11901486
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Super-lncRNA与super-enhancer的相互作用在乳腺癌发生发展中作用机制的研究
  • 批准号:
    81902680
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Three-dimensional super-resolution light microscopy of thick, unprocessed biological samples
职业:厚的、未处理的生物样品的三维超分辨率光学显微镜
  • 批准号:
    2404769
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Scale-up and commercialization of an innovative forming technology for low-cost production of super-light automotive structural parts (SECA)
用于低成本生产超轻型汽车结构件的创新成型技术的规模化和商业化(SECA)
  • 批准号:
    10027134
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Super receivers for visible light communications
用于可见光通信的超级接收器
  • 批准号:
    2780902
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Development of super-resolution three-dimensional non-fluorescent single particle tracking method for nanospaces utilizing light scattering
利用光散射的纳米空间超分辨率三维非荧光单粒子跟踪方法的发展
  • 批准号:
    22H00194
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Super receivers for visible light communications
用于可见光通信的超级接收器
  • 批准号:
    2743395
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
A cryo light microscope with confocal/super-resolution capabilities to target macromolecular complexes for in-cell structural biology
具有共焦/超分辨率功能的冷冻光学显微镜,可针对细胞内结构生物学的大分子复合物
  • 批准号:
    MR/X013111/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Live-cell, deep-tissue, low-light, 3D-STED confocal microscopy: a super-resolution imaging platform specifically designed for plant science.
活细胞、深层组织、低光、3D-STED 共焦显微镜:专为植物科学设计的超分辨率成像平台。
  • 批准号:
    BB/W019752/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Understanding host interactions with high consequence pathogens using super resolution light microscopy in biocontainment.
在生物防护中使用超分辨率光学显微镜了解宿主与高后果病原体的相互作用。
  • 批准号:
    BB/W020351/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
EAGER: SUPER: Light and Warm Polariton Driven Superconductors (PoDS)
EAGER:SUPER:光和温暖的极化子驱动超导体(PoDS)
  • 批准号:
    2132470
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Cryo-3D-super-resolution light microscope for correlative microscopy
用于相关显微镜的 Cryo-3D 超分辨率光学显微镜
  • 批准号:
    RTI-2022-00350
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Tools and Instruments
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了