Collaborative Research: CNS Core: Small: IMPERIAL: In-Memory Processing Enhanced Racetrack Inspired by Accessing Laterally
合作研究:CNS Core:Small:IMPERIAL:受横向访问启发的内存处理增强赛道
基本信息
- 批准号:2133340
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Next generation mobile systems require memory and storage with unprecedented density and access speed that meets strict power/energy and reliability constraints. Moreover, these systems can benefit from application specific acceleration on data intensive workloads. For instance, Internet of Things (IoT) devices are tasked with acquiring, storing, and processing vast amounts of acquired information. Edge systems may slightly relax power/energy constraints, but can benefit from acceleration of machine learning, security, or other application specific tasks while maintaining quality of service on tasks from simultaneous disparate users. This project explores applying a new and understudied emerging memory technology called domain-wall memory (DWM) and its application to the needs of mobile and edge devices. DWM has properties that can be exploited to increase storage density, access speed, and to relieve the memory access bottleneck that exists in modern systems. The PIs will leverage their expertise to create a cross-layer design approach spanning the device/circuit- through system-level to develop a novel cross-DWM (XDWM) memory architecture with lateral read and write access capabilities. These innovations will revolutionize storage and processing for next generation mobile and edge devices by providing synergistic data storage and efficient processing-in-memory (PIM) with hooks for reliability. A cross-layer evaluation methodology will be adopted to cover prototype fabrication, device-level characterization, architecture-level simulation, and full system integration and emulation to explore the PIM. The transformative nature of this research is a disruptive new memory system that is dense, reliable, energy-efficient, ultra low latency with compute capability that can revolutionize the storage and processing capabilities of next generation computing systems. Such systems particularly include IoT, mobile and secure shared use edge systems but also apply to high performance computing and cloud systems. Further impacts of the proposed research include the integration of various education and advocacy activities based on the resources available to the two PIs such as (i) outreach for local K-12 students through Pitt's “Investing Now” summer school and USF's “Engineering Day” and Expo, where Engineering solutions are showcased to approximately 10,000 K-12 students/parents/teachers. (ii) inclusivity: Both PIs have a track record of including Under-represented Minority (URM) students.. They will continue to focus on URM representation in their team. (iii) curriculum: course integration of the research at both sites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代移动系统需要内存和存储具有前所未有的密度和访问速度,以满足严格的功率/能量和可靠性限制。此外,这些系统可以从数据密集型工作负载上的特定于应用程序的加速中获益。例如,物联网(IoT)设备的任务是获取、存储和处理大量已获取的信息。边缘系统可能会稍微放松功率/能量限制,但可以从机器学习、安全性或其他特定应用任务的加速中受益,同时保持来自同时不同用户的任务的服务质量。该项目探索了一种新的、尚未得到充分研究的新兴存储技术——域墙存储器(DWM)及其在移动和边缘设备需求中的应用。DWM具有可以用来提高存储密度、访问速度和缓解现代系统中存在的内存访问瓶颈的特性。pi将利用他们的专业知识创建跨器件/电路到系统级的跨层设计方法,以开发具有横向读写访问能力的新型跨dwm (XDWM)内存体系结构。这些创新将通过提供协同数据存储和高效内存处理(PIM)以及可靠性挂钩,彻底改变下一代移动和边缘设备的存储和处理方式。将采用跨层评估方法来涵盖原型制造、器件级表征、架构级仿真以及完整的系统集成和仿真,以探索PIM。这项研究的变革性质是一种具有颠覆性的新存储系统,它具有密集,可靠,节能,超低延迟的计算能力,可以彻底改变下一代计算系统的存储和处理能力。这些系统特别包括物联网、移动和安全共享使用边缘系统,但也适用于高性能计算和云系统。拟议研究的进一步影响包括基于两个pi可用资源的各种教育和宣传活动的整合,例如(i)通过皮特大学的“现在投资”暑期学校和南佛罗里达大学的“工程日”和博览会向当地K-12学生推广工程解决方案,其中约有10,000名K-12学生/家长/教师。(ii)包容性:两所私立学校都有招收代表性不足的少数民族学生的记录。他们将继续关注URM在他们团队中的代表。(三)课程设置:两地研究的课程整合。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pinning Fault Mode Modeling for DWM Shifting
- DOI:10.1109/tcsii.2022.3161594
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Kawsher A. Roxy;Stephen Longofono;Sébastien Olliver;S. Bhanja;A. R. U. O. Florida;U. Pittsburgh
- 通讯作者:Kawsher A. Roxy;Stephen Longofono;Sébastien Olliver;S. Bhanja;A. R. U. O. Florida;U. Pittsburgh
CORUSCANT: Fast Efficient Processing-in-Racetrack Memories
- DOI:10.1109/micro56248.2022.00060
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:S. Ollivier;Stephen Longofono;Prayash Dutta;J. Hu;S. Bhanja;A. Jones
- 通讯作者:S. Ollivier;Stephen Longofono;Prayash Dutta;J. Hu;S. Bhanja;A. Jones
A Multi-Domain Magneto Tunnel Junction for Racetrack Nanowire Strips
- DOI:10.1109/tnano.2023.3298920
- 发表时间:2022-05
- 期刊:
- 影响因子:2.4
- 作者:Prayash Dutta;Albert Lee;Kang L. Wang;A. Jones;S. Bhanja
- 通讯作者:Prayash Dutta;Albert Lee;Kang L. Wang;A. Jones;S. Bhanja
Toward Comprehensive Shifting Fault Tolerance for Domain-Wall Memories with PIETT
利用 PIETT 实现域壁存储器的全面移位容错
- DOI:10.1109/tc.2022.3188206
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Ollivier, Sebastien;Longofono, Stephen;Dutta, Prayash;Hu, Jingtong;Bhanja, Sanjukta;Jones, Alex K.
- 通讯作者:Jones, Alex K.
XDWM: A 2D Domain Wall Memory
XDWM:2D 畴壁存储器
- DOI:10.1109/tnano.2022.3158889
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Hoque, Arifa;Jones, Alex K.;Bhanja, Sanjukta
- 通讯作者:Bhanja, Sanjukta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjukta Bhanja其他文献
Sanjukta Bhanja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjukta Bhanja', 18)}}的其他基金
LSAMP Bridge to the Doctorate: University of South Florida, Florida-Georgia LSAMP (FGLSAMP)
LSAMP 通往博士学位的桥梁:南佛罗里达大学,佛罗里达州佐治亚州 LSAMP (FGLSAMP)
- 批准号:
2306104 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Curricular, Co-curricular, Social, and Financial Supports for Successful Transfer and Graduation of Engineering Undergraduates from Rural/Nontraditional Backgrounds
为来自农村/非传统背景的工程本科生成功转学和毕业提供课程、课外、社会和财政支持
- 批准号:
2030861 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
LSAMP BD: University of South Florida Florida-Georgia Louis Stokes Alliance for Minority Participation (FGLSAMP)
LSAMP BD:南佛罗里达大学佛罗里达州-佐治亚州路易斯斯托克斯少数族裔参与联盟 (FGLSAMP)
- 批准号:
1906518 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
SHF: Small: Reconfigurability and Technology Integration of Magnetic Energy Minimization Co-Processor (MEMCoP)
SHF:小型:磁能最小化协处理器 (MEMCoP) 的可重构性和技术集成
- 批准号:
1619027 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Workshop on Fostering Diversity in the Design Automation for Emerging Computing Community
促进新兴计算社区设计自动化多样性研讨会
- 批准号:
1419422 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
I-Corps: Software Suite for Quality-Control of Patterned Nanostructures
I-Corps:用于图案化纳米结构质量控制的软件套件
- 批准号:
1456185 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CCLI (Exploratory): Introduction of Nano-computing course module in standard Electrical Engineering Courses
CCLI(探索性):标准电气工程课程中纳米计算课程模块的介绍
- 批准号:
0736971 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CAREER: Error Power and Reliability for Nano-Silicon and Beyond
职业:纳米硅及其他领域的误差功率和可靠性
- 批准号:
0639624 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CRI: Infrastructure acquisition for sub-100 nano VLSI research
CRI:100 纳米以下 VLSI 研究的基础设施采购
- 批准号:
0551621 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant














{{item.name}}会员




