Collaborative Research: SCALE MoDL: Adaptivity of Deep Neural Networks
合作研究:SCALE MoDL:深度神经网络的适应性
基本信息
- 批准号:2134106
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching theme of the project is to systematically expand understanding of how deep neural networks (DNNs) work and why or when they are better than classical methods through the lens of "adaptivity." Adaptivity refers to the properties of an algorithm that take advantage of favorable structures in the input data without knowing that these structures exist. That is, adaptive algorithms are those that are free of tuning parameters and could automatically configure themselves to adapt to each input data. The anticipated outcome of the project includes a new theory that explains and quantifies the adaptivity of popular DNN models such as multi-layer perceptrons, self-attention mechanisms (namely, transformer models), and meta-learning. The theory could result in substantial savings in the statistical and computational complexity of these models, allowing them to be applied in resource-constrained settings and to have more environmentally friendly energy footprint. This project will also provide opportunities for students and postdocs to explore interdisciplinary research topics related to deep learning.Specifically, this project investigates (1) the "local adaptivity" of DNNs in estimating functions from noisy data; (2) the "relational adaptivity" of self-attention mechanism that parses a structure data point (such as an image or a chunk of text); and (3) the "task adaptivity" of multi-task and meta-learning algorithms that learn to share information across multiple tasks. The research covers some of the most popular DNN models. Technically the project leverages multiple branches of mathematics (such as function classes, nonparametric statistics, statistical learning theory, optimization, and compressed sensing) and involves innovations in the approximation-theoretic understanding, algorithmic insights, and statistical theory of DNNs. The new analytical tools to be developed are also of independent interest to the broader machine learning theory community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要主题是通过“适应性”的视角,系统地扩大对深度神经网络(DNN)如何工作以及它们为什么或何时比经典方法更好的理解。自适应是指在不知道输入数据中存在有利结构的情况下利用这些结构的算法的特性。也就是说,自适应算法是那些不需要调整参数并且可以自动配置自身以适应每个输入数据的算法。该项目的预期结果包括一种新的理论,该理论解释并量化了流行的DNN模型的适应性,如多层感知器、自我注意机制(即,变压器模型)和元学习。这一理论可以大大节省这些模型的统计和计算复杂性,使它们能够应用于资源有限的环境中,并具有更环保的能源足迹。该项目还将为学生和博士后提供探索与深度学习相关的跨学科研究主题的机会。具体地说,该项目调查(1)DNN在从噪声数据中估计函数时的“局部适应性”;(2)自我注意机制的“关系适应性”,该机制解析结构数据点(如图像或文本块);以及(3)多任务和元学习算法的“任务适应性”,该算法学习在多个任务之间共享信息。这项研究涵盖了一些最流行的DNN模型。从技术上讲,该项目利用了多个数学分支(如函数类、非参数统计、统计学习理论、优化和压缩传感),并涉及DNN的近似理论理解、算法见解和统计理论方面的创新。即将开发的新分析工具也是更广泛的机器学习理论界的独立兴趣。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Active Multi-Task Representation Learning via Lasso
- DOI:10.48550/arxiv.2306.02556
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Yiping Wang;Yifang Chen;Kevin G. Jamieson;S. Du
- 通讯作者:Yiping Wang;Yifang Chen;Kevin G. Jamieson;S. Du
Provable General Function Class Representation Learning in Multitask Bandits and MDPs
- DOI:10.48550/arxiv.2205.15701
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Rui Lu;Andrew Zhao;S. Du;Gao Huang
- 通讯作者:Rui Lu;Andrew Zhao;S. Du;Gao Huang
Blessing of Class Diversity in Pre-training
- DOI:10.48550/arxiv.2209.03447
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Yulai Zhao;Jianshu Chen;S. Du
- 通讯作者:Yulai Zhao;Jianshu Chen;S. Du
Active Multi-Task Representation Learning
主动多任务表示学习
- DOI:10.48550/arxiv.2202.00911
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen, Yifang;Du, Simon S;Jamieson, Kevin
- 通讯作者:Jamieson, Kevin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Du其他文献
sample-complexity of Estimating Convolutional and Recurrent Neural Networks How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network ? ∗
估计卷积和循环神经网络的样本复杂度 估计卷积或循环神经网络需要多少样本?
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Simon Du - 通讯作者:
Simon Du
Decoding-Time Language Model Alignment with Multiple Objectives
具有多个目标的解码时语言模型对齐
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ruizhe Shi;Yifang Chen;Yushi Hu;Alisa Liu;Hanna Hajishirzi;Noah A. Smith;Simon Du - 通讯作者:
Simon Du
Simon Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Du', 18)}}的其他基金
CAREER: Toward a Foundation of Over-Parameterization
职业生涯:迈向超参数化的基础
- 批准号:
2143493 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
- 批准号:
2212261 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
IIS:RI Theoretical Foundations of Reinforcement Learning: From Tabula Rasa to Function Approximation
IIS:RI 强化学习的理论基础:从白板到函数逼近
- 批准号:
2110170 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307253 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307251 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307252 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant